×

zbMATH — the first resource for mathematics

Development of vision-based navigation system for wheeled agent. (English) Zbl 1302.93138
Summary: In this paper, a vision-based navigation system including Support Vector Machine (SVM) path planner and fuzzy Sliding-Mode Controlled (SMC) path follower is developed for a wheeled agent. The developed system, comprising image acquisition, map formatting, path planning, label assignment, and path tracking inference mechanisms, aims to gracefully follow a planned smooth path. To obtain accurate coordinate values, the captured images are first adjusted by calibration processing. As a roadmap method for path generation, the Voronoi diagram is employed as a preprocessor and the Gaussian kernel SVM postprocessor is applied consecutively. To deal with the uncertainties, a path follower based on fuzzy SMC is embedded to track the planned path on line. In this study, a practical framework is implemented to assess the performance. With the real devised system, a series of experiments are carried out and analyzed to confirm the expected performance. The experiments show a robust capability of the system for both path planning and path tracking under various obstacle layouts.

MSC:
93C42 Fuzzy control/observation systems
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
93B12 Variable structure systems
93C85 Automated systems (robots, etc.) in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bhattacharya, Roadmap-based path planning-using the Voronoi diagram for a clearance-based shortest path, IEEE Robot. Autom. Mag. 15 (2) pp 58– (2008) · doi:10.1109/MRA.2008.921540
[2] Tsai, Behavior-based navigation using heuristic fuzzy Kohonen clustering network for mobile service robots, Int. J. Fuzzy Syst. 12 (1) pp 25– (2010)
[3] Menegatti, Image-based memory for robot navigation using properties of omnidirectional images, Robot. Auton. Syst. 47 pp 251– (2004) · doi:10.1016/j.robot.2004.03.014
[4] Li, An interactive visual navigation method using a hand-drawn-route-map in an unknown dynamic environment, Int. J. Fuzzy Syst. 13 (4) pp 311– (2011)
[5] Wang, Design and implementation of vision-based fuzzy obstacle avoidance method on humanoid robot, Int. J. Fuzzy Syst. 13 (1) pp 45– (2011)
[6] Chang, Reconstruction of 3D contour with an active laser-vision robotic system, Asian J. Control 14 (2) pp 400– (2012) · Zbl 1286.93122 · doi:10.1002/asjc.361
[7] Fu , S. Z. G. Hou G. Yang An indoor navigation system for autonomous mobile robot using wireless sensor network Proc. IEEE Int. Conf. Netw. Sens. Control 227 232 2009
[8] Liu, Laser-based mobile robot map building, Adv. Intel. Soft Comput. 133 pp 1085– (2012) · doi:10.1007/978-3-642-27552-4_141
[9] Kyoung-Dong , K. K. Yoon-Gu A. Jinung X. Zhi-Guang L. Suk-Gyu Enhanced localization for team robot navigation using compass sensor and USN Int. Conf. Control, Autom. Syst. 91 95 2010
[10] Suruz, Mobile robot navigation using direction-sensitive RFID reader, Control and Intel. Syst. 39 (4) pp 254– (2011) · Zbl 1288.93061
[11] Isaac, Sensitivity analysis of a tightly-coupled GPS/INS system for autonomous navigation, IEEE Trans. Aerosp. Electron. Syst. 48 (2) pp 1115– (2012) · doi:10.1109/TAES.2012.6178052
[12] Fraichard, From reeds and shepp’s to continuous-curvature paths, IEEE Trans. Robot. 20 (6) pp 1025– (2004) · doi:10.1109/TRO.2004.833789
[13] Papadopoulos, Polynomial-based obstacle avoidance techniques for nonholonomic mobile manipulator systems, Robot. Auton. Syst. 51 (4) pp 229– (2005) · Zbl 02223521 · doi:10.1016/j.robot.2005.03.006
[14] Hentschel , M. D. Lecking B. Wagner Deterministic path planning and navigation for an autonomous fork lift truck Proc. of 6th IFAC Symp. on Intel. Auton. Veh. 2007
[15] Yin, A new potential field method for mobile robot path planning in the dynamic environments, Asian J. Control 11 (2) pp 214– (2009) · doi:10.1002/asjc.98
[16] Marija, Two-way D* algorithm for path planning and replanning, Robot. Auton. Syst. 59 (5) pp 329– (2011) · Zbl 06016735 · doi:10.1016/j.robot.2011.02.007
[17] Vázquez-Martín, LESS-mapping: Online environment segmentation based on spectral mapping, Robot. Auton. Syst. 60 (1) pp 41– (2012) · Zbl 06016803 · doi:10.1016/j.robot.2011.08.011
[18] Francisco, Simultaneous algorithm for trajectory planning, Asian J. Control 12 (4) pp 468– (2010)
[19] Yang , J. J. Kim E. P. Pitarch K. Abdel-Malek Optimal trajectory planning for redundant manipulators based on minimum jerk Proc. ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. 1141 1150 2008
[20] Yang, Safe and smooth: mobile agent trajectory smoothing by SVM, Int. J. Innov. Comput. Inform. Control 8 (7B) pp 4959– (2012)
[21] Schölkopf, Learning with Kernels (2002)
[22] Vapnik, The Nature of Statistical Learning Theory (1995) · Zbl 0833.62008 · doi:10.1007/978-1-4757-2440-0
[23] Vapnik, Statistical Learning Theory (1998)
[24] Chou , F. Y. C. Y. Yang J. S. Yang Support vector machine based artificial potential field for autonomous guided vehicle Proc. 4th Int. Symp. Precision Mechanical Measurements 71304J 2008
[25] Elie, A higher level path tracking controller for a four-wheel differentially steered mobile robot, Robot. Auton. Syst. 54 pp 23– (2006) · Zbl 05011232 · doi:10.1016/j.robot.2005.10.001
[26] Tsai, Development of a hybrid iterative learning control for contouring NURBS curves, Asian J. Control 13 (1) pp 107– (2011) · Zbl 1248.93179 · doi:10.1002/asjc.298
[27] Keighobadi, From nonlinear to fuzzy approaches in trajectory tracking control of wheeled mobile robots, Asian J. Control 14 (4) pp 960– (2012) · Zbl 1286.93108 · doi:10.1002/asjc.480
[28] Hsiao, Interval type-2 adaptive fuzzy sliding-mode dynamic control design for wheeled mobile robots, Int. J. Fuzzy Syst. 10 (4) pp 268– (2008)
[29] Su, Robust tracking control design and its application to balance a two-wheeled robot steering on a bumpy road, Proc. Inst. of Mech. Eng., Part I: J. of Syst. and Control Eng. 226 (7) pp 887– (2012)
[30] Tsai , R. Y. An efficient and accurate camera calibration technique for 3d machine vision IEEE Conf. Comput. Vis. and Pattern Recognit. 364 374 1986
[31] Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses, IEEE J. Robotics Autom. 3 (4) pp 323– (1987) · doi:10.1109/JRA.1987.1087109
[32] Haneish , H. Y. Miyake Distortion compensation of electronic endoscope images IEEE Nucl. Sci. Symp. Med. Imaging Conf. 1717 1721 1993
[33] Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Discov. 2 (2) pp 955– (1998) · Zbl 05470543 · doi:10.1023/A:1009715923555
[34] Zohar, Mobile robot characterized by dynamic and kinematic equations and actuator dynamics: Trajectory tracking and related application, Robot. Auton. Syst. 59 (6) pp 343– (2011) · Zbl 06016736 · doi:10.1016/j.robot.2010.12.001
[35] Wai, Adaptive sliding-mode control for induction servomotor drive, IEE Proc. Electric. Power Appl. 147 (6) pp 553– (2000) · doi:10.1049/ip-epa:20000628
[36] Rheinisch Westfälische Technische Hochschule Aachen RWTH-Mindstorms NXT Toolbox for MATLAB http://www.mindstorms.rwth-aachen.de/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.