×

zbMATH — the first resource for mathematics

Output formation-containment of coupled heterogeneous linear systems under intermittent communication. (English) Zbl 1355.93023
Summary: This paper investigates the output formation-containment problem of the coupled heterogeneous linear systems under intermittent communication. The systems considered in this paper are more general in the sense that each system, whether a leader or a follower, has different dimension and different dynamic. Besides, each system only communicates with its neighbors intermittently. Based on the intermittent information, both the state-feedback and the output-feedback distributed control protocols are designed and a criterion is derived to calculate the lower bound of the communication ratio. Furthermore, a heuristic algorithm based on the Fireworks Algorithm is developed to obtain an optimized communication ratio, which greatly reduces the communication burden. Finally, numerical examples are provided to demonstrate the effectiveness of the theoretical results.

MSC:
93A14 Decentralized systems
93C05 Linear systems in control theory
90C59 Approximation methods and heuristics in mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yu, W.; Chen, G.; Cao, M., Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems, Automatica, 46, 6, 1089-1095, (2010) · Zbl 1192.93019
[2] Wen, G.; Duan, Z.; Chen, G.; Yu, W., Consensus tracking of multi-agent systems with Lipschitz-type node dynamics and switching topologies, IEEE Trans. Circuits Syst. I, Reg. Pap., 61, 2, 499-511, (2014)
[3] Li, T.; Xie, L., Distributed consensus over digital networks with limited bandwidth and time-varying topologies, Automatica, 47, 9, 2006-2015, (2011) · Zbl 1227.93009
[4] Li, Z.; Duan, Z.; Chen, G.; Huang, L., Consensus of multiagent systems and synchronization of complex networksa unified viewpoint, IEEE Trans. Circuits Syst. I, Reg. Pap., 57, 1, 213-224, (2010)
[5] Cheng, L.; Hou, Z.-. G.; Tan, M., A mean square consensus protocol for linear multi-agent systems with communication noises and fixed topologies, IEEE Trans. Autom. Control, 59, 1, 261-267, (2014) · Zbl 1360.93020
[6] Xie, D.; Liu, Q.; Lv, L.; Li, S., Necessary and sufficient condition for the group consensus of multi-agent systems, Appl. Math. Comput., 243, 870-878, (2014) · Zbl 1335.91029
[7] Wieland, P.; Sepulchre, R.; Allgöwer, F., An internal model principle is necessary and sufficient for linear output synchronization, Automatica, 47, 5, 1068-1074, (2011) · Zbl 1233.93011
[8] Kim, H.; Shim, H.; Seo, J. H., Output consensus of heterogeneous uncertain linear multi-agent systems, IEEE Trans. Autom. Control, 56, 1, 200-206, (2011) · Zbl 1368.93378
[9] Wu, Y.; Wu, Z.; Su, H., Robust output synchronisation of non-identical linear agents via internal model principle, IET Control Theory Appl., 9, 12, 1755-1765, (2015)
[10] Su, Y.; Huang, J., Cooperative output regulation of linear multi-agent systems, IEEE Trans. Autom. Control, 57, 4, 1062-1066, (2012) · Zbl 1369.93051
[11] Su, Y.; Huang, J., Cooperative output regulation of linear multi-agent systems by output feedback, Syst. Control Lett., 61, 12, 1248-1253, (2012) · Zbl 1255.93014
[12] Liang, H.; Zhang, H.; Wang, Z.; Zhang, J., Output regulation for heterogeneous linear multi-agent systems based on distributed internal model compensator, Appl. Math. Comput., 242, 1, 736-747, (2014) · Zbl 1334.93014
[13] Hong, Y.; Wang, X.; Jiang, Z. P., Distributed output regulation of leader-follower multi-agent systems, Int. J. Robust Nonlinear, 23, 1, 48-66, (2013) · Zbl 1263.93007
[14] Li, J.; Zhang, W.; Su, H.; Yang, Y., Flocking of partially-informed multi-agent systems avoiding obstacles with arbitrary shape, Auton. Agent Multi-Agents, 29, 5, 943-972, (2014)
[15] Tian, E.; Yue, D.; Peng, C., Reliable control for networked control systems with probabilistic actuator fault and random delays, J. Frankl. Inst., 347, 10, 1907-1926, (2010) · Zbl 1206.93108
[16] Qiu, J.; Ding, S. X.; Gao, H.; Yin, S., Fuzzy-model-based reliable static output feedback control of nonlinear hyperbolic PDE systems, IEEE Trans. Fuzzy Syst., 24, 2, 388-400, (2016)
[17] Y. Wei, J. Qiu, H. K. Lam, L. Wu, Approaches to T-S fuzzy-affine-model-based reliable output feedback control for nonlinear ito stochastic systems, IEEE Trans. Fuzzy Syst., 2016, 10.1109/TFUZZ.2016.2566810.
[18] Jian, L.; Ju, H. P., Fault detection filter design for switched systems with quantization effects, J. Frankl. Inst., 353, 2431-2450, (2016) · Zbl 1347.93235
[19] L. Li, S. X. Ding, J. Qiu, Y. Yang, Weighted fuzzy observer-based fault detection approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions, IEEE Trans. Fuzzy Syst., 2016, 10.1109/TFUZZ.2016.2514371.
[20] L. Li, S. X. Ding, J. Qiu, Y. Yang, Real-time fault detection approach for nonlinear systems and its asynchronous T-S fuzzy observer-based implementation, IEEE Trans. Cybern., to be published.
[21] Ji, M.; Ferrari-Trecate, G.; Egerstedt, M.; Buffa, A., Containment control in mobile networks, IEEE Trans. Autom. Control, 53, 8, 1972-1975, (2008) · Zbl 1367.93398
[22] Y. Cao, W. Ren, Containment control with multiple stationary or dynamic leaders under a directed interaction graph, in: Proceedings of the 48th IEEE Conference on Decision Control and 28th Chinese Control Conference, Shanghai, PR China, 2009, pp. 3014-3019.
[23] Hu, J.; Cao, J., Hierarchical cooperative control for multiagent systems with switching directed topologies, IEEE Trans. Neural Netw., 26, 10, 2453-2463, (2015)
[24] Cao, Y.; Stuart, D.; Ren, W.; Meng, Z., Distributed containment control for multiple autonomous vehicles with double-integrator dynamicsalgorithms and experiments, IEEE Trans. Control Syst. Technol., 19, 4, 929-938, (2011)
[25] Lou, Y.; Hong, Y., Target containment control of multi-agent systems with random switching interconnection topologies, Automatica, 48, 5, 879-885, (2012) · Zbl 1246.93104
[26] Li, Z.; Duan, Z.; Ren, W.; Feng, G., Containment control of linear multi-agent systems with multiple leaders of bounded inputs using distributed continuous controllers, Int. J. Robust Nonlinear, 25, 13, 2101-2121, (2015) · Zbl 1328.93023
[27] Su, H.; Jia, G.; Chen, M. Z., Semi-global containment control of multi-agent systems with intermittent input saturation, J. Frankl. Inst., 352, 9, 3504-3525, (2015) · Zbl 1395.93023
[28] Dong, X.; Meng, F.; Shi, Z.; Lu, G.; Zhong, Y., Output containment control for swarm systems with general linear dynamicsa dynamic output feedback approach, Syst. Control Lett., 71, 31-37, (2014) · Zbl 1296.93004
[29] Dong, X.; Li, Q.; Ren, Z.; Zhong, Y., Formation-containment control for high-order linear time-invariant multi-agent systems with time delays, J. Frankl. Inst., 352, 9, 3564-3584, (2015) · Zbl 1395.93011
[30] Dong, X.; Li, Q.; Ren, Z.; Zhong, Y., Output formation-containment analysis and design for general linear time-invariant multi-agent systems, J. Frankl. Inst., 353, 2, 322-344, (2016) · Zbl 1395.93012
[31] Y. Lou, Y. Hong, Multi-leader set coordination of multi-agent systems with random switching topologies, in: Proceedings of the 49th IEEE Conference Decision Control, Altanta, GA, 2010, pp. 3820-3825.
[32] Zheng, Y.; Wang, L., Containment control of heterogeneous multi-agent systems, Int. J. Control, 87, 1, 1-8, (2014) · Zbl 1317.93026
[33] Haghshenas, H.; Badamchizadeh, M. A.; Baradarannia, M., Containment control of heterogeneous linear multi-agent systems, Automatica, 54, 210-216, (2015) · Zbl 1318.93005
[34] Chu, H.; Gao, L.; Zhang, W., Distributed adaptive containment control of heterogeneous linear multi-agent systemsan output regulation approach, IET Control Theory Appl., 10, 1, 95-102, (2016)
[35] Wang, T.; Gao, H.; Qiu, J., A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control, IEEE Trans. Neural Netw., 27, 99, 416-425, (2015)
[36] Wang, T.; Zhang, Y.; Qiu, J.; Gao, H., Adaptive fuzzy backstepping control for a class of nonlinear systems with sampled and delayed measurements, IEEE Trans. Fuzzy Syst., 23, 2, 302-312, (2015)
[37] Ma, C.; Shi, P.; Zhao, X.; Zeng, Q., Consensus of Euler-Lagrange systems networked by sampled-data information with probabilistic time delays, IEEE Trans. Cybern., 45, 6, 1126-1133, (2015)
[38] Wang, T.; Gao, H.; Qiu, J., A combined fault-tolerant and predictive control for network-based industrial processes, IEEE Trans. Ind. Electron., 63, 4, 2529-2536, (2016)
[39] Wei, Y.; Qiu, J.; Karimi, H. R.; Wang, M., Model reduction for continuous-time Markovian jump systems with incomplete statistics of mode information, Int. J. Syst. Sci., 45, 7, 1496-1507, (2014) · Zbl 1290.93032
[40] Wei, Y.; Qiu, J.; Karimi, H. R.; Wang, M., Filtering design for two-dimensional Markovian jump systems with state-delays and deficient mode information, Inf. Sci., 269, 4, 316-331, (2014) · Zbl 1339.93111
[41] Wang, Y. W.; Tao, B.; Xiao, J. W.; Wen, C., Global synchronization of complex dynamical networks through digital communication with limited data rate, IEEE Trans. Neural Netw., 26, 10, 2487-2499, (2015)
[42] Guan, Z.-. H.; Hu, B.; Chi, M.; He, D.-. X.; Cheng, X.-. M., Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control, Automatica, 50, 9, 2415-2418, (2014) · Zbl 1297.93012
[43] Wei, Y.; Qiu, J.; Karimi, H. R.; Wang, M., Model approximation for two-dimensional Markovian jump systems with state-delays and imperfect mode information, Multidim. Syst. Signal Process., 26, 3, 575-597, (2014) · Zbl 1349.62381
[44] Wei, Y.; Qiu, J.; Reza, K. H.; Mao, W., New results on \(H_\infty\) dynamic output feedback control for Markovian jump systems with time-varying delay and defective mode information, Optim. Control Appl. Methods, 35, 6, 656-675, (2014) · Zbl 1305.93184
[45] Zhu, W.; Jiang, Z.-. P.; Feng, G., Event-based consensus of multi-agent systems with general linear models, Automatica, 50, 2, 552-558, (2014) · Zbl 1364.93489
[46] Hu, W.; Liu, L.; Feng, G., Consensus of linear multi-agent systems by distributed event-triggered strategy, IEEE Trans. Cybern., 46, 1, 148-157, (2016)
[47] Li, H.; Liao, X.; Huang, T.; Zhu, W., Event-triggering sampling based leader-following consensus in second-order multi-agent systems, IEEE Trans. Autom. Control, 60, 7, 1998-2003, (2015) · Zbl 1360.93031
[48] Wan, Y.; Cao, J., Distributed robust stabilization of linear multi-agent systems with intermittent control, J. Frankl. Inst., 352, 4515-4527, (2015) · Zbl 1395.93471
[49] Huang, N.; Duan, Z.; Zhao, Y., Consensus of multi-agent systems via delayed and intermittent communications, IET Control Theory Appl., 9, 1, 62-73, (2015)
[50] Miah, S.; Bao, N.; Bourque, A.; Spinello, D., Nonuniform coverage control with stochastic intermittent communication, IEEE Trans. Autom. Control, 60, 7, 1981-1986, (2015) · Zbl 1360.90074
[51] Liang, Y.; Wang, X., Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods, Physica A, 395, 4, 434-444, (2014) · Zbl 1395.93053
[52] Tan, Y.; Zhu, Y., Advances in swarm intelligence, Fireworks Algorithm for Optimization, (2010), Springer Berlin Heidelberg
[53] Wen, G.; Duan, Z.; Ren, W.; Chen, G., Distributed consensus of multi-agent systems with general linear node dynamics and intermittent communications, Int. J. Robust Nonlinear, 24, 16, 2438-2457, (2014) · Zbl 1302.93018
[54] Meng, Z.; Ren, W.; You, Z., Distributed finite-time attitude containment control for multiple rigid bodies, Automatica, 46, 12, 2092-2099, (2010) · Zbl 1205.93010
[55] J. Huang, Nonlinear output regulation: Theory and applications. SIAM, Phildelphia PA, 2004 · Zbl 1087.93003
[56] Wang, R.; Dong, X.; Li, Q.; Ren, Z., Distributed adaptive time-varying formation for multi-agent systems with general high-order linear time-invariant dynamics, J. Frankl. Inst., 353, 10, 2290-2304, (2016) · Zbl 1347.93029
[57] Su, Y.; Huang, J., Cooperative output regulation with application to multi-agent consensus under switching network, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 42, 3, 864-875, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.