×

Chip firing on Dynkin diagrams and McKay quivers. (English) Zbl 1448.17015

Summary: This paper establishes new connections between the representation theory of finite groups and sandpile dynamics. Two classes of avalanche-finite matrices and their critical groups (integer cokernels) are studied from the viewpoint of chip-firing/sandpile dynamics, namely, the Cartan matrices of finite root systems and the McKay-Cartan matrices for finite subgroups \(G\) of general linear groups. In the root system case, the recurrent and superstable configurations are identified explicitly and are related to minuscule dominant weights. In the McKay-Cartan case for finite subgroups of the special linear group, the cokernel is related to the abelianization of the subgroup \(G\). In the special case of the classical McKay correspondence, the critical group and the abelianization are shown to be isomorphic.

MSC:

17B22 Root systems
05E10 Combinatorial aspects of representation theory
14E16 McKay correspondence
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Asadi, A., Backman, S.: Chip-firing and Riemann-Roch theory for directed graphs. Electron. Notes Discrete Math. 38, 63-68 (2011) · Zbl 1274.05189 · doi:10.1016/j.endm.2011.09.011
[2] Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38(1), 364-374 (1988) · Zbl 1230.37103 · doi:10.1103/PhysRevA.38.364
[3] Baker, M., Shokrieh, F.: Chip-firing games, potential theory on graphs, and spanning trees. J. Comb. Theory Ser. A 120(1), 164-182 (2013) · Zbl 1408.05089 · doi:10.1016/j.jcta.2012.07.011
[4] Biggs, N.: Chip-firing and the critical group of a graph. J. Algebraic Comb. 9(1), 25-45 (1999) · Zbl 0919.05027 · doi:10.1023/A:1018611014097
[5] Björner, A., Brenti, F.: Combinatorics of Coxeter groups. Graduate Texts in Mathematics, vol. 231. Springer, New York (2005) · Zbl 1110.05001
[6] Björner, A., Lovász, L.: Chip-firing games on directed graphs. J. Algebraic Comb. 1(4), 305-328 (1992) · Zbl 0805.90142 · doi:10.1023/A:1022467132614
[7] Bourbaki, N.: Lie groups and Lie algebras. Chapters 4-6. Elements of Mathematics. Springer, Berlin (2002) · Zbl 0983.17001
[8] Bourbaki, N.: Lie groups and Lie algebras. Chapters 7-9. Elements of Mathematics. Springer, Berlin (2005) · Zbl 1139.17002
[9] Bröcker, T., Tom Dieck, T.: Representations of compact Lie groups. Graduate Texts in Mathematics, vol. 98. Springer, New York (1995) · Zbl 0874.22001
[10] Brylinski, J.-L.: A correspondence dual to McKay’s. arXiv:alg-geom/9612003v2
[11] Chapman, S., Garcia, R., Garcia-Puente, L.D., Malandro, M.E., Smith, K.W.: Algebraic and combinatorial aspects of sandpile monoids on directed graphs. J. Comb. Theory Ser. A 120, 245-265 (2013) · Zbl 1253.05079 · doi:10.1016/j.jcta.2012.08.001
[12] Curtis, C.W., Reiner, I.: Methods of representation theory. Vol. I. With applications to finite groups and orders, Pure and Applied Mathematics. A Wiley-Interscience Publication. Wiley, New York (1981) · Zbl 0469.20001
[13] Dhar, D.: Self-organised critical state of the sandpile automaton models. Phys. Rev. Lett. 64(14), 1613-1616 (1990) · Zbl 0943.82553 · doi:10.1103/PhysRevLett.64.1613
[14] Dummit, D.S., Foote, R.M.: Abstract algebra, 3rd edn. Wiley, Hoboken (2004) · Zbl 1037.00003
[15] Eriksson, K.: Node firing games on graphs. In: Jerusalem Combinatorics ’93. Contemp. Math., vol. 178, pp. 117-127. Amer. Math. Soc., Providence (1994) · Zbl 0819.90149
[16] Etingof, P., Golberg, O., Hensel, S., Liu, T., Schwendner, A., Vaintrob, D., Yudovina, E.: Introduction to representation theory. Student Mathematical Library, vol. 59. American Mathematical Society, Providence (2011) · Zbl 1242.20001
[17] Gabrielov, A.: Asymmetric abelian avalanches and sandpile, preprint 93-65. Math. Sciences Institute, Cornell University (1993)
[18] Gaetz, C.: Critical groups of McKay-Cartan matrices. Univ. of Minnesota undergraduate honors thesis. www.math.umn.edu/ reiner/HonorsTheses/Gaetz_thesis.pdf
[19] Gaetz, C.: Critical groups of group representations. Linear Algebra Appl. 508, 91-99 (2016) · Zbl 1346.05298 · doi:10.1016/j.laa.2016.07.001
[20] Gallian, J., Witte, D.: A survey: Hamiltonian cycles in Cayley graphs. Discrete Math. 51, 293-304 (1984) · Zbl 0718.05038 · doi:10.1016/0012-365X(84)90010-4
[21] Gashi, Q.R., Schedler, T.: On dominance and minuscule Weyl group elements. J. Algebraic Comb. 33, 383-399 (2011) · Zbl 1239.20045 · doi:10.1007/s10801-010-0248-2
[22] Gashi, Q.R., Schedler, T., Speyer, D.: Looping of the numbers game and the alcoved hypercube. J. Comb. Theory Ser. A 119, 713-730 (2012) · Zbl 1272.05220 · doi:10.1016/j.jcta.2011.11.012
[23] Grinberg, D., Huang, J., Reiner, V.: Critical groups for Hopf algebra modules. arXiv:1704.03778 · Zbl 1458.16036
[24] Guzmán, J., Klivans, C.: Chip-firing and energy minimization on M-matrices. J. Comb. Theory Ser. A 132, 14-31 (2015) · Zbl 1307.05032 · doi:10.1016/j.jcta.2014.12.002
[25] Holroyd, A., Levine, L., Meszaros, K., Peres, Y., Propp, J., Wilson, D. B.: Chip-firing and rotor-routing on directed graphs. In: In and out of equilibrium. 2. Progr. Probab., vol. 60, pp. 331-364. Birkhäuser, Basel (2008) · Zbl 1173.82339
[26] Humphreys, J.E.: Introduction to Lie algebras and representation theory, Second printing, revised. Graduate Texts in Mathematics, vol. 9, Springer, New York (1978) · Zbl 0447.17001
[27] Humphreys, J.E.: Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990) · Zbl 0725.20028
[28] Kac, V.G.: Infinite-dimensional Lie algebras, 3rd edn. Cambridge University Press, Cambridge (1990) · Zbl 0716.17022 · doi:10.1017/CBO9780511626234
[29] McKay, J.: Cartan matrices, finite groups of quaternions, and Kleinian singularities. Proc. Am. Math. Soc. 81(1), 153-154 (1981) · Zbl 0477.20006
[30] Merino, C.: The chip firing game and matroid complexes, Discrete models: combinatorics, computation, and geometry (Paris, 2001), 245255 (electronic). Discrete Math. Theor. Comput. Sci. Proc., AA, Maison Inform. Math. Discrt. (MIMD), Paris (2001) · Zbl 0998.05010
[31] Perkinson, D., Perlman, J., Wilmes, J.: Primer for the algebraic geometry of sandpiles. In: Tropical and non-Archimedean geometry. Contemp. Math., vol. 605, pp. 211-256. Amer. Math. Soc., Providence (2013) · Zbl 1320.05060
[32] Plemmons, R.J.: M-matrix characterizations. I. Nonsingular M-matrices. Linear Algebra Appl. 18(2), 175-188 (1977) · Zbl 0359.15005 · doi:10.1016/0024-3795(77)90073-8
[33] Postnikov, A., Shapiro, B.: Trees, parking functions, syzygies, and deformations of monomial ideals. Trans. Am. Math. 356(8), 3109-3142 (2004) · Zbl 1043.05038 · doi:10.1090/S0002-9947-04-03547-0
[34] Speer, E.R.: Asymmetric abelian sandpile models. J. Stat. Phys. 71(1-2), 61-74 (1993) · Zbl 0943.82551 · doi:10.1007/BF01048088
[35] Steinberg, R.: Finite subgroups of \[SU_2\] SU2, Dynkin diagrams and affine Coxeter elements. Pac. J. Math. 118(2), 587-598 (1985) · Zbl 0567.20026 · doi:10.2140/pjm.1985.118.587
[36] Stembridge, J.R.: The partial order of dominant weights. Adv. Math. 136, 340-364 (1998) · Zbl 0916.06001 · doi:10.1006/aima.1998.1736
[37] Wagner, D.G.: The critical group of a directed graph. arXiv:math/0010241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.