×

zbMATH — the first resource for mathematics

T-duality orbifolds of heterotic Narain compactifications. (English) Zbl 1378.83087
Summary: To obtain a unified framework for symmetric and asymmetric heterotic orbifold constructions we provide a systematic study of Narain compactifications orbifolded by finite order T-duality subgroups. We review the generalized vielbein that parametrizes the Narain moduli space (i.e. the metric, the B-field and the Wilson lines) and introduce a convenient basis of generators of the heterotic T-duality group. Using this we generalize the space group description of orbifolds to Narain orbifolds. This yields a unified, crystallographic description of the orbifold twists, shifts as well as Narain moduli. In particular, we derive a character formula that counts the number of unfixed Narain moduli after orbifolding. More-over, we develop new machinery that may ultimately open up the possibility for a full classification of Narain orbifolds. This is done by generalizing the geometrical concepts of Q-, Z- and affine classes from the theory of crystallography to the Narain case. Finally, we give a variety of examples illustrating various aspects of Narain orbifolds, including novel T-folds.

MSC:
83E30 String and superstring theories in gravitational theory
53Z05 Applications of differential geometry to physics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, The heterotic string, Phys. Rev. Lett.54 (1985) 502 [INSPIRE].
[2] D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 1. The free heterotic string, Nucl. Phys.B 256 (1985) 253 [INSPIRE].
[3] D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 2. The interacting heterotic string, Nucl. Phys.B 267 (1986) 75 [INSPIRE].
[4] L.E. Ibáñez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K., (2012) [INSPIRE]. · Zbl 1260.81001
[5] L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds, Nucl. Phys.B 261 (1985) 678 [INSPIRE].
[6] L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds. 2, Nucl. Phys.B 274 (1986) 285 [INSPIRE]. · Zbl 1388.81190
[7] Fischer, M.; Ratz, M.; Torrado, J.; Vaudrevange, PKS, Classification of symmetric toroidal orbifolds, JHEP, 01, 084, (2013) · Zbl 1342.81360
[8] L.E. Ibáñez, H.P. Nilles and F. Quevedo, Orbifolds and Wilson lines, Phys. Lett.B 187 (1987) 25 [INSPIRE].
[9] Ibáñez, LE; Kim, JE; Nilles, HP; Quevedo, F., Orbifold compactifications with three families of SU(3) × SU(2) × U(1)\^{n}, Phys. Lett., B 191, 282, (1987)
[10] Casas, JA; Muñoz, C., Three generation SU(3) × SU(2) × U(1)_{Y} models from orbifolds, Phys. Lett., B 214, 63, (1988)
[11] Casas, JA; Katehou, EK; Muñoz, C., U(1) charges in orbifolds: anomaly cancellation and phenomenological consequences, Nucl. Phys., B 317, 171, (1989)
[12] Font, A.; Ibáñez, LE; Quevedo, F.; Sierra, A., The construction of ‘realistic’ four-dimensional strings through orbifolds, Nucl. Phys., B 331, 421, (1990)
[13] Bailin, D.; Love, A., Orbifold compactifications of string theory, Phys. Rept., 315, 285, (1999)
[14] Förste, S.; Nilles, HP; Vaudrevange, PKS; Wingerter, A., Heterotic brane world, Phys. Rev., D 70, 106008, (2004)
[15] T. Kobayashi, S. Raby and R.-J. Zhang, Searching for realistic 4d string models with a Pati-Salam symmetry: orbifold grand unified theories from heterotic string compactification on a Z_{6}orbifold, Nucl. Phys.B 704 (2005) 3 [hep-ph/0409098] [INSPIRE]. · Zbl 1198.81158
[16] W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric Standard Model from the heterotic string, Phys. Rev. Lett.96 (2006) 121602 [hep-ph/0511035] [INSPIRE].
[17] Buchmüller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M., Supersymmetric standard model from the heterotic string (II), Nucl. Phys., B 785, 149, (2007) · Zbl 1149.81344
[18] J.E. Kim and B. Kyae, Flipped SU(5) from Z_{12−\(I\)}orbifold with Wilson line, Nucl. Phys.B 770 (2007) 47 [hep-th/0608086] [INSPIRE]. · Zbl 1119.81088
[19] Lebedev, O.; etal., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett., B 645, 88, (2007) · Zbl 1256.81094
[20] J.E. Kim, J.-H. Kim and B. Kyae, Superstring Standard Model from Z_{12−\(I\)}orbifold compactification with and without exotics and effective R-parity, JHEP06 (2007) 034 [hep-ph/0702278] [INSPIRE].
[21] Lebedev, O.; etal., The heterotic road to the MSSM with R parity, Phys. Rev., D 77, 046013, (2008)
[22] O. Lebedev, H.P. Nilles, S. Ramos-Sánchez, M. Ratz and P.K.S. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z_{6}orbifold, Phys. Lett.B 668 (2008)331 [arXiv:0807.4384] [INSPIRE].
[23] Blaszczyk, M.; Groot Nibbelink, S.; Ratz, M.; Ruehle, F.; Trapletti, M.; Vaudrevange, PKS, A Z_{2} × Z_{2} standard model, Phys. Lett., B 683, 340, (2010)
[24] Mayorga Pena, DK; Nilles, HP; Oehlmann, P-K, A zip-code for quarks, leptons and Higgs bosons, JHEP, 12, 024, (2012)
[25] S. Groot Nibbelink and O. Loukas, MSSM-like models on Z_{8}toroidal orbifolds, JHEP12 (2013) 044 [arXiv:1308.5145] [INSPIRE]. · Zbl 1342.83415
[26] Carballo-Pérez, B.; Peinado, E.; Ramos-Sánchez, S., Δ(54) flavor phenomenology and strings, JHEP, 12, 131, (2016)
[27] V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic Standard Model, Phys. Lett.B 618 (2005) 252 [hep-th/0501070] [INSPIRE]. · Zbl 1247.81349
[28] Braun, V.; He, Y-H; Ovrut, BA; Pantev, T., A standard model from the E_{8} × E_{8} heterotic superstring, JHEP, 06, 039, (2005)
[29] Blumenhagen, R.; Honecker, G.; Weigand, T., Loop-corrected compactifications of the heterotic string with line bundles, JHEP, 06, 020, (2005)
[30] Anderson, LB; Gray, J.; Lukas, A.; Palti, E., Heterotic line bundle standard models, JHEP, 06, 113, (2012) · Zbl 1397.81406
[31] Anderson, LB; Constantin, A.; Gray, J.; Lukas, A.; Palti, E., A comprehensive scan for heterotic SU(5) GUT models, JHEP, 01, 047, (2014)
[32] S. Groot Nibbelink, O. Loukas and F. Ruehle, (MS)SM-like models on smooth Calabi-Yau manifolds from all three heterotic string theories, Fortsch. Phys.63 (2015) 609 [arXiv:1507.07559] [INSPIRE]. · Zbl 1338.81337
[33] W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Local grand unification, in CP violation and the flavour puzzle: symposium in honour of Gustavo C. Branco. GustavoFest 2005, Lisbon Portugal, July 2005, pg. 143 [hep-ph/0512326] [INSPIRE].
[34] T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys.B 768 (2007) 135 [hep-ph/0611020] [INSPIRE]. · Zbl 1117.81354
[35] Nilles, HP; Vaudrevange, PKS, Geography of fields in extra dimensions: string theory lessons for particle physics, Mod. Phys. Lett., A 30, 1530008, (2015) · Zbl 1310.81007
[36] Mueller, MT; Witten, E., Twisting toroidally compactified heterotic strings with enlarged symmetry groups, Phys. Lett., B 182, 28, (1986)
[37] Buscher, TH, A symmetry of the string background field equations, Phys. Lett., B 194, 59, (1987)
[38] A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett.B 242 (1990) 163 [INSPIRE]. · Zbl 0965.81085
[39] Siegel, W., Superspace duality in low-energy superstrings, Phys. Rev., D 48, 2826, (1993)
[40] Narain, KS; Sarmadi, MH; Vafa, C., Asymmetric orbifolds, Nucl. Phys., B 288, 551, (1987)
[41] Hellerman, S.; McGreevy, J.; Williams, B., Geometric constructions of nongeometric string theories, JHEP, 01, 024, (2004) · Zbl 1243.81156
[42] Dabholkar, A.; Hull, C., Duality twists, orbifolds and fluxes, JHEP, 09, 054, (2003)
[43] Shelton, J.; Taylor, W.; Wecht, B., Nongeometric flux compactifications, JHEP, 10, 085, (2005)
[44] Hull, CM, A geometry for non-geometric string backgrounds, JHEP, 10, 065, (2005)
[45] Hull, CM, Doubled geometry and T-folds, JHEP, 07, 080, (2007)
[46] Hull, C.; Zwiebach, B., Double field theory, JHEP, 09, 099, (2009)
[47] Hohm, O.; Hull, C.; Zwiebach, B., Background independent action for double field theory, JHEP, 07, 016, (2010) · Zbl 1290.81069
[48] Aldazabal, G.; Marqués, D.; Núñez, C., Double field theory: a pedagogical review, Class. Quant. Grav., 30, 163001, (2013) · Zbl 1273.83001
[49] Lüst, D., T-duality and closed string non-commutative (doubled) geometry, JHEP, 12, 084, (2010) · Zbl 1294.81255
[50] Condeescu, C.; Florakis, I.; Lüst, D., Asymmetric orbifolds, non-geometric fluxes and non-commutativity in closed string theory, JHEP, 04, 121, (2012) · Zbl 1348.81362
[51] J.A. Harvey, G.W. Moore and C. Vafa, Quasicrystalline compactification, Nucl. Phys.B 304 (1988) 269 [INSPIRE].
[52] Ibáñez, LE; Mas, J.; Nilles, H-P; Quevedo, F., Heterotic strings in symmetric and asymmetric orbifold backgrounds, Nucl. Phys., B 301, 157, (1988)
[53] Narain, KS; Sarmadi, MH; Vafa, C., Asymmetric orbifolds: path integral and operator formulations, Nucl. Phys., B 356, 163, (1991)
[54] Imamura, Y.; Sakamoto, M.; Sasada, T.; Tabuse, M., Symmetries between untwisted and twisted strings on asymmetric orbifolds, Nucl. Phys., B 390, 291, (1993)
[55] Imamura, Y.; Sakamoto, M.; Sasada, T.; Tabuse, M., String theories on the asymmetric orbifolds with twist-untwist intertwining currents, Prog. Theor. Phys. Suppl., 110, 261, (1992) · Zbl 0831.22005
[56] Sasada, T., Fermion currents on asymmetric orbifolds, Phys. Lett., B 343, 128, (1995)
[57] T. Sasada, Space-time supersymmetry in asymmetric orbifold models, hep-th/9403037 [INSPIRE]. · Zbl 0965.81085
[58] Erler, J., Asymmetric orbifolds and higher level models, Nucl. Phys., B 475, 597, (1996) · Zbl 0925.81183
[59] Aoki, K.; D’Hoker, E.; Phong, DH, On the construction of asymmetric orbifold models, Nucl. Phys., B 695, 132, (2004) · Zbl 1213.81184
[60] Tan, HS, T-duality twists and asymmetric orbifolds, JHEP, 11, 141, (2015) · Zbl 1388.81190
[61] Satoh, Y.; Sugawara, Y., Lie algebra lattices and strings on T-folds, JHEP, 02, 024, (2017) · Zbl 1377.83129
[62] Taylor, TR, Model building on asymmetric Z_{3} orbifolds: nonsupersymmetric models, Nucl. Phys., B 303, 543, (1988)
[63] Satoh, Y.; Sugawara, Y.; Wada, T., Non-supersymmetric asymmetric orbifolds with vanishing cosmological constant, JHEP, 02, 184, (2016) · Zbl 1388.83695
[64] Sugawara, Y.; Wada, T., More on non-supersymmetric asymmetric orbifolds with vanishing cosmological constant, JHEP, 08, 028, (2016) · Zbl 1390.83355
[65] Kawai, H.; Lewellen, DC; Henry Tye, S-H, Construction of fermionic string models in four-dimensions, Nucl. Phys., B 288, 1, (1987)
[66] I. Antoniadis, C.P. Bachas and C. Kounnas, Four-dimensional superstrings, Nucl. Phys.B 289 (1987) 87 [INSPIRE].
[67] Athanasopoulos, P.; Faraggi, AE; Groot Nibbelink, S.; Mehta, VM, Heterotic free fermionic and symmetric toroidal orbifold models, JHEP, 04, 038, (2016) · Zbl 1388.81428
[68] Faraggi, AE; Nanopoulos, DV; Yuan, K-J, A standard like model in the 4D free fermionic string formulation, Nucl. Phys., B 335, 347, (1990)
[69] G.B. Cleaver, A.E. Faraggi and D.V. Nanopoulos, String derived MSSM and M-theory unification, Phys. Lett.B 455 (1999) 135 [hep-ph/9811427] [INSPIRE]. · Zbl 1016.81506
[70] Faraggi, AE, A new standard-like model in the four-dimensional free fermionic string formulation, Phys. Lett., B 278, 131, (1992)
[71] Faraggi, AE, Construction of realistic standard-like models in the free fermionic superstring formulation, Nucl. Phys., B 387, 239, (1992)
[72] Beye, F.; Kobayashi, T.; Kuwakino, S., Gauge symmetries in heterotic asymmetric orbifolds, Nucl. Phys., B 875, 599, (2013) · Zbl 1331.81186
[73] Beye, F.; Kobayashi, T.; Kuwakino, S., Three-generation asymmetric orbifold models from heterotic string theory, JHEP, 01, 013, (2014)
[74] Beye, F.; Kobayashi, T.; Kuwakino, S., Dilaton stabilization in three-generation heterotic string model, Phys. Lett., B 760, 63, (2016)
[75] Lerche, W.; Lüst, D.; Schellekens, AN, Chiral four-dimensional heterotic strings from selfdual lattices, Nucl. Phys., B 287, 477, (1987)
[76] K.S. Narain, New heterotic string theories in uncompactified dimensions < 10, Phys. Lett.B 169 (1986) 41 [INSPIRE].
[77] Gepner, D., Space-time supersymmetry in compactified string theory and superconformal models, Nucl. Phys., B 296, 757, (1988)
[78] Gepner, D., Exactly solvable string compactifications on manifolds of SU(N) holonomy, Phys. Lett., B 199, 380, (1987)
[79] B. Gato-Rivera and A.N. Schellekens, Asymmetric Gepner models: revisited, Nucl. Phys.B 841 (2010) 100 [arXiv:1003.6075] [INSPIRE]. · Zbl 1207.81119
[80] Gato-Rivera, B.; Schellekens, AN, Asymmetric Gepner models II: heterotic weight lifting, Nucl. Phys., B 846, 429, (2011) · Zbl 1208.81161
[81] A.N. Schellekens, Big numbers in string theory, arXiv:1601.02462 [INSPIRE]. · Zbl 0957.81575
[82] Israël, D.; Thiéry, V., Asymmetric Gepner models in type-II, JHEP, 02, 011, (2014) · Zbl 1333.83193
[83] D. Israël, Nongeometric Calabi-Yau compactifications and fractional mirror symmetry, Phys. Rev.D 91 (2015) 066005 [Erratum ibid.D 91 (2015) 129902] [arXiv:1503.01552] [INSPIRE].
[84] Blumenhagen, R.; Fuchs, M.; Plauschinn, E., The asymmetric CFT landscape in D = 4, 6, 8 with extended supersymmetry, Fortsch. Phys., 65, 1700006, (2017) · Zbl 1371.81269
[85] Blumenhagen, R.; Deser, A.; Plauschinn, E.; Rennecke, F.; Schmid, C., The intriguing structure of non-geometric frames in string theory, Fortsch. Phys., 61, 893, (2013) · Zbl 1338.81315
[86] Blumenhagen, R.; Sun, R., T-duality, non-geometry and Lie algebroids in heterotic double field theory, JHEP, 02, 097, (2015) · Zbl 1388.83751
[87] Vaidyanathaswamy, R., Integer-roots of the unit matrix, J. Lond. Math. Soc., 3, 121, (1928) · JFM 54.0110.07
[88] J. Polchinski, String theory. Vol. 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K., (2007) [INSPIRE]. · Zbl 1006.81522
[89] S. Bittanti, A.J. Laub and J.C. Willems, The Riccati equation, Springer Science & Business Media, Germany, (2012). · Zbl 0734.34004
[90] Cvetič, M.; Louis, J.; Ovrut, BA, A string calculation of the Kähler potentials for moduli of Z_{N} orbifolds, Phys. Lett., B 206, 227, (1988)
[91] Dabholkar, A.; Harvey, JA, String islands, JHEP, 02, 006, (1999) · Zbl 0965.81085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.