×

zbMATH — the first resource for mathematics

Niemeier lattices in the free fermionic heterotic-string formulation. (English) Zbl 1400.81158
Summary: The spinor-vector duality was discovered in free fermionic constructions of the heterotic string in four dimensions. It played a key role in the construction of heterotic-string models with an anomaly-free extra \(Z^{\prime}\) symmetry that may remain unbroken down to low energy scales. A generic signature of the low scale string derived \(Z^{\prime}\) model is via diphoton excess that may be within reach of the LHC. A fascinating possibility is that the spinor-vector duality symmetry is rooted in the structure of the heterotic-string compactifications to two dimensions. The two-dimensional heterotic-string theories are in turn related to the so-called moonshine symmetries that underlie the two-dimensional compactifications. In this paper, we embark on exploration of this connection by the free fermionic formulation to classify the symmetries of the two-dimensional heterotic-string theories. We use two complementary approaches in our classification. The first utilises a construction which is akin to the one used in the spinor-vector duality. Underlying this method is the triality property of \(\mathrm{SO}(8)\) representations. In the second approach, we use the free fermionic tools to classify the twenty-four-dimensional Niemeier lattices.
MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T25 Quantum field theory on lattices
81R25 Spinor and twistor methods applied to problems in quantum theory
81S05 Commutation relations and statistics as related to quantum mechanics (general)
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81V80 Quantum optics
22E70 Applications of Lie groups to the sciences; explicit representations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ATLAS Collaboration; Aad, G. · Zbl 1390.81725
[2] CMS Collaboration; Chatrchyan, S.
[3] Strumia, A., Interpreting the 750 GeV digamma excess: a review, CERN-TH-2016-131, (2016)
[4] Faraggi, A. E.; Rizos, J., The 750 GeV di-photon LHC excess and extra \(Z^{\operatorname{'}}\)s in heterotic-string derived models, European Physical Journal C, 76, 170, (2016)
[5] Faraggi, A. E.; Rizos, J., A light \(Z^{\operatorname{'}}\) heterotic-string derived model, Nuclear Physics B, 895, 233-247, (2015) · Zbl 1329.81310
[6] Ashfaque, J.; Delle Rose, L.; Faraggi, A. E.; Marzo, C., The LHC di-photon excess and gauge coupling unification in extra \(Z^{\operatorname{'}}\) heterotic-string derived models, European Physical Journal C, 76, 10, article 570, (2016)
[9] Langacker, P., The physics of heavy \(Z^{\operatorname{'}}\) gauge bosons, Reviews of Modern Physics, 81, 1199, (2009)
[10] Leike, A., The phenomenology of extra neutral gauge bosons, Physics Reports, 317, 143-250, (1999)
[11] Hewett, J. L.; Rizzo, T. G., Low-energy phenomenology of superstring-inspired E6 models, Physics Reports, 183, 5-6, 193-381, (1989)
[12] Faraggi, A. E., Proton stability and superstring \(Z^{\operatorname{'}}\), Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 499, 1-2, 147-157, (2001)
[13] Faraggi, A. E.; Mehta, V. M., Proton stability and light \(Z^{\operatorname{'}}\) inspired by string derived models, Physical Review D - Particles, Fields, Gravitation and Cosmology, 84, 8, (2011)
[14] Faraggi, A. E.; Mehta, V. M., Proton stability, gauge coupling unification, and a light \(Z^{\operatorname{'}}\) in heterotic-string models, Physical Review D - Particles, Fields, Gravitation and Cosmology, 88, 2, (2013)
[15] Athanasopoulos, P.; Faraggi, A. E.; Mehta, V. M., Light \(Z^{\operatorname{'}}\) in heterotic string standardlike models, Physical Review D - Particles, Fields, Gravitation and Cosmology, 89, 10, (2014)
[16] Gregori, A.; Kounnas, C.; Rizos, J., Classification of the \(N = 2\), \(Z_2 \times Z_2\)-symmetric type II orbifolds and their type II asymmetric duals, Nuclear Physics B, 549, 1-2, 16-62, (1999) · Zbl 0946.81060
[17] Faraggi, A. E.; Kounnas, C.; Nooij, S. E. M.; Rizos, J., Classification of the chiral \(Z_2 \times Z_2\) fermionic models in the heterotic superstring, Nuclear Physics B, 695, 1-2, 41-72, (2004) · Zbl 1213.81194
[18] Faraggi, A. E.; Kounnas, C.; Rizos, J., Chiral family classification of fermionic \(Z_2 \times Z_2\) heterotic orbifold models, Physics Letters B, 648, 1, 84-89, (2007) · Zbl 1248.81166
[19] Faraggi, A. E.; Kounnas, C.; Rizos, J., Spinor-vector duality in fermionic \(Z_2 \times Z_2\) heterotic orbifold models, Nuclear Physics B, 774, 1-3, 208-231, (2007) · Zbl 1118.81060
[20] Assel, B.; Christodoulides, K.; Faraggi, A. E.; Kounnas, C.; Rizos, J., Exophobic quasi-realistic heterotic string vacua, Physics Letters B, 683, 4-5, 306-313, (2010)
[21] Assel, B.; Christodoulides, K.; Faraggi, A. E.; Kounnas, C.; Rizos, J., Classification of heterotic Pati-Salam models, Nuclear Physics B, 844, 3, 365-396, (2011) · Zbl 1207.81099
[22] Faraggi, A. E.; Rizos, J.; Sonmez, H., Classification of flipped \(S U(5)\) heterotic-string vacua, Nuclear Physics B, 886, 202-242, (2014) · Zbl 1325.81138
[23] Sonmez, H., Flipped \(S U(5)\) breaking basis vector, Physical Review D, 93, 12, (2016)
[24] Faraggi, A. E.; Florakis, I.; Mohaupt, T.; Tsulaia, M., Conformal aspects of spinor-vector duality, Nuclear Physics B, 848, 2, 332-371, (2011) · Zbl 1215.81085
[25] Kounnas, C., Massive boson-fermion degeneracy and the early structure of the universe, Fortschritte der Physik. Progress of Physics, 56, 11-12, 1143-1156, (2008) · Zbl 1158.83327
[26] Florakis, I.; Kounnas, C., Orbifold symmetry reductions of massive boson-fermion degeneracy, Nuclear Physics B, 820, 1-2, 237-268, (2009) · Zbl 1194.81198
[27] Faraggi, A. E.; Kounnas, C.; Rizos, J., Spinor-vector duality in \(N = 2\) heterotic string vacua, Nuclear Physics B, 799, 1-2, 19-33, (2008) · Zbl 1283.81111
[28] Antoniadis, I.; Bachas, C. P.; Kounnas, C., Four-dimensional superstrings, Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems, 289, 1, 87-108, (1987)
[29] Kawai, H.; Lewellen, D. C.; Tye, S. H., Construction of fermionic string models in four dimensions, Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems, 288, 1, 1-76, (1987)
[30] Kawai, H.; Lewellen, D. C.; Tye, S.-H. H., Classification of closed-fermionic-string models, Physical Review D, 34, 12, 3794-3804, (1986)
[31] Antoniadis, I.; Ellis, J.; Hagelin, J. S.; Nanopoulos, D. V., The flipped SU(5) × U(1) string model revamped, Physics Letters B, 231, 1-2, 65-74, (1989)
[32] Faraggi, A. E.; Nanopoulos, D. V.; Yuan, K., A standard-like model in the four-dimensional free fermionic string formulation, Nuclear Physics, Section B, 335, 2, 347-362, (1990)
[33] Antoniadis, I.; Leontaris, G. K.; Rizos, J., A three-generation SU(4)×O(4) string model, Physics Letters B, 245, 2, 161-168, (1990)
[34] Faraggi, A. E., A new standard-like model in the four dimensional free fermionic string formulation, Physics Letters B, 278, 1-2, 131-139, (1992)
[35] Faraggi, A. E., Construction of realistic standard-like models in the free fermionic superstring formulation, Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems, 387, 2, 239-262, (1992)
[36] Cleaver, G. B.; Faraggi, A. E.; Nanopoulos, D. V., String derived MSSM and M-theory unification, Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology, 455, 1-4, 135-146, (1999) · Zbl 1016.81506
[37] Leontaris, G. K.; Rizos, J., \(N = 2\) supersymmetric \(S U(4) \times S U(2)_L \times S U(2)_R\) effective theory from the weakly coupled heterotic superstring, Nuclear Physics B, 554, 1-2, 3-49, (1999) · Zbl 0958.81190
[38] Cleaver, G. B.; Faraggi, A. E.; Savage, C., Left-right symmetric heterotic-string derived models, Physical Review. D. Third Series, 63, 6, (2001)
[39] Faraggi, A. E.; Manno, E.; Timirgaziu, C., Minimal standard heterotic string models, European Physical Journal C, 50, 3, 701-710, (2007) · Zbl 1191.81171
[40] Faraggi, A. E., Generation mass hierarchy in superstring derived models, Nuclear Physics, Section B, 407, 1, 57-72, (1993)
[41] Faraggi, A. E., Partition functions of NAHE-based free fermionic string models, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 544, 1-2, 207-214, (2002) · Zbl 0997.81607
[42] Angelantonj, C.; Faraggi, A. E.; Tsulaia, M., Spinor-vector duality in heterotic string orbifolds, Journal of High Energy Physics, 1007, 7, article no. 4, (2010) · Zbl 1290.81093
[43] Catelin-Jullien, T.; Faraggi, A. E.; Kounnas, C.; Rizos, J., Spinor-vector duality in heterotic SUSY vacua, Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems, 812, 1-2, 103-127, (2009) · Zbl 1194.81191
[44] Athanasopoulos, P.; Faraggi, A. E.; Gepner, D., Spectral flow as a map between \(N = (2,0)\)-models, Physics Letters B, 735, 357-363, (2014) · Zbl 1380.81188
[45] Niemeier, H.-V., Definite quadratische formen der dimension 24 und diskriminante 1, Journal of Number Theory, 5, 142-178, (1973) · Zbl 0258.10009
[46] Conway, J. H.; Sloane, N. J. A., Sphere Packing, Lattices and Groups, (1998), New York, NY, USA: Springer, New York, NY, USA · Zbl 0917.11027
[47] Ebeling, W., Lattices and Codes: A Course Partially Based on Lectures by Friedrich Hirzebruch, Advanced Lectures in Mathematics, (2012), New York, NY, USA: Springer, New York, NY, USA
[48] Cheng, M. C. N.; Duncan, J. F. R.; Harvey, J. A., Umbral moonshine and the niemeier lattices, Research in the Mathematical Sciences, 1, 3, (2014) · Zbl 1365.11044
[49] Athanasopoulos, P.; Faraggi, A. E.; Nibbelink, S. G.; Mehta, V. M., Heterotic free fermionic and symmetric toroidal orbifold models, Journal of High Energy Physics, 2016, 4, article no. 38, (2016) · Zbl 1388.81428
[50] Athanasopoulos, P., Relations in the space of (2, 0) heterotic string models [Ph.D. thesis], (2016), Liverpool, England: University of Liverpool, Liverpool, England
[51] Dixon, L.; Ginsparg, P.; Harvey, J., Beauty and the beast: superconformal symmetry in a Monster module, Communications in Mathematical Physics, 119, 2, 221-241, (1988) · Zbl 0657.17011
[52] Faraggi, A. E., \(Z_2 \times Z_2\) orbifold compactification as the origin of realistic free fermionic models, Physics Letters B, 326, 1-2, 62-68, (1994)
[53] Kiritsis, E.; Kounnas, C., Perturbative and non-perturbative partial supersymmetry breaking: \(N = 4 \rightarrow N = 2 \rightarrow N = 1\), Nuclear Physics B, 503, 1-2, 117-156, (1997) · Zbl 0979.81570
[54] Berglund, P.; Ellis, J.; Faraggi, A. E.; Nanopoulos, D. V.; Qiu, Z., Toward the \(M(F)\)-theory embedding of realistic free-fermion models, Physics Letters B, 433, 3-4, 269-278, (1998)
[55] Berglund, P.; Ellis, J.; Faraggi, A. E.; Nanopoulos, D. V.; Qiu, Z., On elevating free-fermion \(z_2 \times z_2\) orbifolds models to compactifications of \(F\) theory, International Journal of Modern Physics A, 15, 9, 1345, (2000) · Zbl 1049.81579
[56] Donagi, R.; Faraggi, A. E., On the number of chiral generations in \(Z_2 \times Z_2\) orbifolds, Nuclear Physics B, 694, 1-2, 187-205, (2004) · Zbl 1130.81352
[57] Faraggi, A. E.; Förste, S.; Timirgaziu, C., z_2 × z_2 heterotic orbifold models of non factorisable six dimensional toroidal manifolds, Journal of High Energy Physics, 608, 8, article no. 057, (2006)
[58] Ibanez, L.; Kim, J. E.; Nilles, H. P.; Quevedo, F., Orbifold compactifications with three families of \(\operatorname{S} \operatorname{u}(3) \times \operatorname{S} \operatorname{u}(2) \times \operatorname{U}(1)^n\), Physics Letters B, 191, 3, 282-286, (1987)
[59] Dienes, K. R., New string partition functions with vanishing cosmological constant, Physical Review Letters, 65, 16, 1979-1982, (1990)
[60] Dienes, K. R., Statistics on the heterotic landscape: gauge groups and cosmological constants of four-dimensional heterotic strings, Physical Review. D. Third Series, 73, 10, (2006)
[61] Blumenhagen, R.; Gmeiner, F.; Honecker, G.; Lüst, D.; Weigand, T., The statistics of supersymmetric D-brane models, Nuclear Physics B, 713, 1-3, 83-135, (2005) · Zbl 1176.81098
[62] Denef, F.; Douglas, M. R., Distributions of flux vacua, Journal of High Energy Physics, 405, article 72, (2004)
[63] Kobayashi, T.; Raby, S.; Zhang, R.-J., Searching for realistic 4d string models with a Pati–Salam symmetry. Orbifold grand unified theories from heterotic string compactification on a Z_6 orbifold, Nuclear Physics B, 704, 1-2, 3-55, (2005) · Zbl 1198.81158
[64] Acharya, B. S.; Denef, F.; Valadro, R., Statistics of \(M\) theory vacua, The Journal of High Energy Physics, 506, article 56, (2005)
[65] Douglas, M. R.; Taylor, W., The landscape of intersecting brane models, Journal of High Energy Physics, 701, article 31, (2007)
[66] Lebedev, O.; Nilles, H. P.; Raby, S.; Ramos-Sánchez, S.; Ratz, M.; Vaudrevange, P. K. S., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Physics Letters B, 645, 1, 88-94, (2007) · Zbl 1256.81094
[67] Greene, B. R.; Plesser, M. R., Duality in Calabi-Yau moduli space, Nuclear Physics, Section B, 338, 1, 15-37, (1990)
[68] Vafa, C.; Witten, E., On orbifolds with discrete torsion, Journal of Geometry and Physics, 15, 3, 189-214, (1995) · Zbl 0816.53053
[69] Eguchi, T., Professor nambu, string theory and moonshine phenomenon, Journal of High Energy Physics, (2016) · Zbl 1361.81004
[70] Cheng, M. C. N.; de Lange, P.; Whalen, D. P. Z., Generalised umbral moonshine, Journal of High Energy Physics, (2016) · Zbl 1439.11115
[71] Nikulin, V. V., Degenerations of Kahlerian K3 surfaces with finite symplectic automorphism groups. III · Zbl 1348.14097
[72] Kachru, S., Elementary introduction to Moonshine, (2016)
[73] Harrison, S. M., Extremal chiral \(N = 4\) SCFT with \(c = 24\), Journal of High Energy Physics, 2016, 11, article 6, (2016) · Zbl 1390.83062
[74] Paquette, N. M.; Persson, D.; Volpato, R., Monstrous BPS-algebras and the superstring origin of moonshine, Journal of High Energy Physics, (2016) · Zbl 1370.81147
[75] Taormina, A.; Wendland, K., The overarching finite symmetry group of Kummer surfaces in the Mathieu group M 24, Journal of High Energy Physics, 308, 8, article no. 125, (2013) · Zbl 1342.81470
[76] Gaberdiel, M. R.; Hohenegger, S.; Volpato, R., Mathieu twining characters for K3, Journal of High Energy Physics, 1010, 9, article no. 62, (2010) · Zbl 1291.81311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.