×

Linear stability theory of two-layer fluid flow in an inclined channel. (English) Zbl 0847.76017

The authors study the linear stability of a laminar two-layer flow in an inclined channel. It is well-known that in this case several mechanisms can cause the instability of the flat interface between the fluids. These mechanisms are: i) the Rayleigh-Taylor instability; ii) the instability due to viscosity stratification and shear; iii) the wave-steepening instability found in single-phase falling films; iv) the shear instabilities observed in plane Poiseuille flow. All these mechanisms are investigated in detail, and thus the paper can be useful to research workers.

MSC:

76E05 Parallel shear flows in hydrodynamic stability
76V05 Reaction effects in flows
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112067000357 · Zbl 0144.47102 · doi:10.1017/S0022112067000357
[2] DOI: 10.1063/1.1693422 · Zbl 0216.52703 · doi:10.1063/1.1693422
[3] DOI: 10.1017/S0022112084000860 · Zbl 0562.76103 · doi:10.1017/S0022112084000860
[4] DOI: 10.1017/S0022112089000960 · Zbl 0683.76039 · doi:10.1017/S0022112089000960
[5] DOI: 10.1017/S0022112089002077 · doi:10.1017/S0022112089002077
[6] DOI: 10.1017/S0022112090000131 · Zbl 0709.76671 · doi:10.1017/S0022112090000131
[7] DOI: 10.1017/S0022112091000265 · Zbl 0729.76505 · doi:10.1017/S0022112091000265
[8] DOI: 10.1017/S0022112092000041 · doi:10.1017/S0022112092000041
[9] DOI: 10.1063/1.857670 · Zbl 0716.76069 · doi:10.1063/1.857670
[10] DOI: 10.1063/1.857420 · Zbl 0659.76112 · doi:10.1063/1.857420
[11] DOI: 10.1063/1.857784 · Zbl 0704.76060 · doi:10.1063/1.857784
[12] DOI: 10.1017/S0022112092002878 · Zbl 0753.76058 · doi:10.1017/S0022112092002878
[13] DOI: 10.1063/1.864952 · Zbl 0586.76062 · doi:10.1063/1.864952
[14] DOI: 10.1098/rsta.1980.0265 · Zbl 0445.76013 · doi:10.1098/rsta.1980.0265
[15] DOI: 10.1017/S0022112062000828 · Zbl 0106.41101 · doi:10.1017/S0022112062000828
[16] DOI: 10.1017/S0022112082001852 · Zbl 0491.76045 · doi:10.1017/S0022112082001852
[17] DOI: 10.1063/1.866933 · Zbl 0657.76043 · doi:10.1063/1.866933
[18] DOI: 10.1007/BF01177670 · Zbl 0318.76025 · doi:10.1007/BF01177670
[19] DOI: 10.1016/0020-7225(87)90005-X · Zbl 0617.76044 · doi:10.1016/0020-7225(87)90005-X
[20] DOI: 10.1063/1.866228 · Zbl 0628.76054 · doi:10.1063/1.866228
[21] DOI: 10.1017/S0022112057000373 · Zbl 0078.18003 · doi:10.1017/S0022112057000373
[22] DOI: 10.1063/1.866285 · doi:10.1063/1.866285
[23] DOI: 10.1017/S0022112090000805 · Zbl 0706.76047 · doi:10.1017/S0022112090000805
[24] Yih C. S., Q. Appl. Math. 12 pp 434– (1955) · Zbl 0064.19608 · doi:10.1090/qam/65330
[25] DOI: 10.1098/rspa.1933.0193 · JFM 59.1458.02 · doi:10.1098/rspa.1933.0193
[26] DOI: 10.1063/1.865478 · Zbl 0601.76036 · doi:10.1063/1.865478
[27] DOI: 10.1016/0009-2509(86)80032-X · doi:10.1016/0009-2509(86)80032-X
[28] DOI: 10.1137/0152002 · Zbl 0741.76082 · doi:10.1137/0152002
[29] DOI: 10.1017/S0022112094002685 · Zbl 0885.76034 · doi:10.1017/S0022112094002685
[30] DOI: 10.1063/1.868291 · Zbl 0827.76020 · doi:10.1063/1.868291
[31] DOI: 10.1137/0714004 · Zbl 0357.65058 · doi:10.1137/0714004
[32] DOI: 10.1063/1.865346 · Zbl 0586.76097 · doi:10.1063/1.865346
[33] DOI: 10.1063/1.858737 · Zbl 0799.76023 · doi:10.1063/1.858737
[34] DOI: 10.1017/S002211209200168X · Zbl 0775.76193 · doi:10.1017/S002211209200168X
[35] DOI: 10.1017/S0022112072001508 · doi:10.1017/S0022112072001508
[36] DOI: 10.1098/rspa.1983.0004 · doi:10.1098/rspa.1983.0004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.