zbMATH — the first resource for mathematics

Relaxed Gauss-Newton methods with applications to electrical impedance tomography. (English) Zbl 07292230
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65K10 Numerical optimization and variational techniques
35R30 Inverse problems for PDEs
68U10 Computing methodologies for image processing
49M15 Newton-type methods
90C26 Nonconvex programming, global optimization
Full Text: DOI
[1] F. J. Aragón Artacho and M. H. Geoffroy, Characterization of metric regularity of subdifferentials, J. Convex Anal., 15 (2008), pp. 365-380. · Zbl 1146.49012
[2] K. Astala and L. Päivärinta, Calderón’s inverse conductivity problem in the plane, Ann. of Math. (2), 163 (2006), pp. 265-299. · Zbl 1111.35004
[3] H. Attouch, J. Bolte, and B. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward–backward splitting, and regularized Gauss-Seidel methods, Math. Program., 137 (2013), pp. 91-129, https://doi.org/10.1007/s10107-011-0484-9. · Zbl 1260.49048
[4] J. M. Bardsley, A. Seppänen, A. Solonen, H. Haario, and J. Kaipio, Randomize-then-optimize for sampling and uncertainty quantification in electrical impedance tomography, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 1136-1158, https://doi.org/10.1137/140978272. · Zbl 1381.94010
[5] A. Beck, First-Order Methods in Optimization, MOS-SIAM Ser. Optim. 25, SIAM, 2017, https://doi.org/10.1137/1.9781611974997. · Zbl 1384.65033
[6] J. Bolte, S. Sabach, and M. Teboulle, Nonconvex Lagrangian-based optimization: Monitoring schemes and global convergence, Math. Oper. Res., 43 (2018), pp. 1051-1404, https://doi.org/10.1287/moor.2017.0900. · Zbl 1440.90072
[7] J. V. Burke and M. C. Ferris, A Gauss-Newton method for convex composite optimization, Math. Programming, 71 (1995), pp. 179-194, https://doi.org/10.1007/BF01585997. · Zbl 0846.90083
[8] A. P. Calderón, On an inverse boundary value problem, Comput. Appl. Math., 25 (2006), pp. 133-138. · Zbl 1182.35230
[9] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), pp. 120-145, https://doi.org/10.1007/s10851-010-0251-1. · Zbl 1255.68217
[10] K.-S. Cheng, D. Isaacson, J. Newell, and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Engrg., 36 (1989), pp. 918-924.
[11] F. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math. 5, SIAM, 1990, https://doi.org/10.1137/1.9781611971309. · Zbl 0696.49002
[12] C. Clason, S. Mazurenko, and T. Valkonen, Acceleration and global convergence of a first-order primal-dual method for nonconvex problems, SIAM J. Optim., 29 (2019), pp. 933-963, https://doi.org/10.1137/18M1170194. · Zbl 1414.49037
[13] T. A. Davis, Algorithm 832: Umfpack v4.3-an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw., 30 (2004), pp. 196-199, https://doi.org/10.1145/992200.992206. · Zbl 1072.65037
[14] M. H. DeGroot, Optimal Statistical Decisions, reprint of the 1970 original, Wiley Classics Library, Wiley-Interscience [John Wiley & Sons], 2005.
[15] O. Ferreira, M. Gonçalves, and P. Oliveira, Convergence of the Gauss-Newton method for convex composite optimization under a majorant condition, SIAM J. Optim., 23 (2013), pp. 1757-1783, https://doi.org/10.1137/110841606. · Zbl 1277.49036
[16] G. Garrigos, L. Rosasco, and S. Villa, Convergence of the Forward-Backward Algorithm: Beyond the Worst Case with the Help of Geometry, preprint, https://arxiv.org/abs/1703.09477, 2017.
[17] M. Hallaji, A. Seppänen, and M. Pour-Ghaz, Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete, Smart Mater. Struct., 23 (2014), 085001, https://doi.org/10.1088/0964-1726/23/8/085001.
[18] M. Hanke, A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems, 13 (1997), pp. 79-95, https://doi.org/10.1088/0266-5611/13/1/007. · Zbl 0873.65057
[19] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer-Verlag, 2001, https://doi.org/10.1007/978-3-642-56468-0. · Zbl 0998.49001
[20] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci. 160, Springer-Verlag, 2005. · Zbl 1068.65022
[21] B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems, Radon Ser. Comput. Appl. Math. 6, De Gruyter, 2008. · Zbl 1145.65037
[22] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37 (1984), pp. 289-298. · Zbl 0586.35089
[23] R. V. Kohn and M. Vogelius, Determining conductivity by boundary measurements II: Interior results, Comm, Pure Appl. Math., 38 (1985), pp. 643-667. · Zbl 0595.35092
[24] A. S. Lewis, Active sets, nonsmoothness, and sensitivity, SIAM J. Optim., 13 (2002), pp. 702-725, https://doi.org/10.1137/S1052623401387623. · Zbl 1055.90072
[25] A. S. Lewis and S. Zhang, Partial smoothness, tilt stability, and generalized Hessians, SIAM J. Optim., 23 (2013), pp. 74-94, https://doi.org/10.1137/110852103. · Zbl 1267.90147
[26] C. Li and X. Wang, On convergence of the Gauss-Newton method for convex composite optimization, Math. Program., 91 (2002), pp. 349-356, https://doi.org/10.1007/s101070100249. · Zbl 1049.90132
[27] J. Liang, J. Fadili, and G. Peyré, Local linear convergence of forward-backward under partial smoothness, in Advances in Neural Information Processing Systems, 27, Curran Associates, Inc., 2014, pp. 1970-1978, http://papers.nips.cc/paper/5260-local-linear-convergence-of-forward-backward-under-partial-smoothness.pdf.
[28] A. Lipponen, A. Seppänen, and J. P. Kaipio, Electrical impedance tomography imaging with reduced-order model based on proper orthogonal decomposition, J. Electron. Imaging, 22 (2013), 023008. · Zbl 1197.35326
[29] S. Mazurenko, J. Jauhiainen, and T. Valkonen, Primal-Dual Block-Proximal Splitting for a Class of Non-convex Problems, preprint, https://arxiv.org/abs/1911.06284, Electron. Trans. Numer. Anal., to appear.
[30] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim., 15 (1977), pp. 959-972, https://doi.org/10.1137/0315061. · Zbl 0376.90081
[31] J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, Comput. Sci. Eng. 10, SIAM, 2012, https://doi.org/10.1137/1.9781611972344. · Zbl 1262.65124
[32] J. Nocedal and S. Wright, Numerical Optimization, Springer Ser. Oper. Res. Financial Eng., Springer, 2006, https://doi.org/10.1007/978-0-387-40065-5.
[33] J. S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms, SIAM J. Optim., 3 (1993), pp. 443-465, https://doi.org/10.1137/0803021. · Zbl 0784.90082
[34] T. Pock and A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex optimization, in Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, 2011, pp. 1762-1769, https://doi.org/10.1109/ICCV.2011.6126441.
[35] L. Q. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper. Res., 18 (1993), pp. 227-244, https://doi.org/10.1287/moor.18.1.227. · Zbl 0776.65037
[36] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Programming, 58 (1993), pp. 353-367, https://doi.org/10.1007/bf01581275. · Zbl 0780.90090
[37] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268. · Zbl 0780.49028
[38] M. Salo, Calderón Problem, lecture notes, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland, 2008, http://users.jyu.fi/ salomi/lecturenotes/calderon_lectures.pdf.
[39] S. Salzo and S. Villa, Convergence analysis of a proximal Gauss-Newton method, Comput. Optim. Appl., 53 (2012), pp. 557-589, https://doi.org/10.1007/s10589-012-9476-9. · Zbl 1282.90236
[40] E. Somersalo, M. Cheney, and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), pp. 1023-1040, https://doi.org/10.1137/0152060. · Zbl 0759.35055
[41] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), pp. 153-169. · Zbl 0625.35078
[42] G. Uhlmann, Electrical impedance tomography and Calderón’s problem, Inverse Problems, 25 (2009), 123011, https://doi.org/10.1088/0266-5611/25/12/123011. · Zbl 1181.35339
[43] T. Valkonen, A primal-dual hybrid gradient method for nonlinear operators with applications to MRI, Inverse Problems, 30 (2014), 055012, https://doi.org/10.1088/0266-5611/30/5/055012. · Zbl 1310.47081
[44] T. Valkonen, Preconditioned Proximal Point Methods and Notions of Partial Subregularity, preprint, https://arxiv.org/abs/1711.05123, 2017, J.Convex Anal., to appear.
[45] T. Valkonen, Block-proximal methods with spatially adapted acceleration, Electron. Trans. Numer. Anal., 51 (2019), pp. 15-49, https://doi.org/10.1553/etna_vol51s15. · Zbl 1420.49034
[46] T. Valkonen, First-Order Primal-Dual Methods for Nonsmooth Nonconvex Optimisation, preprint, https://arxiv.org/abs/1910.00115, 2019, submitted.
[47] P. J. Vauhkonen, Image Reconstruction in Three-Dimensional Electrical Impedance Tomography, Ph.D. thesis, University of Kuopio, 2004, http://urn.fi/URN:ISBN:951-781-304-x.
[48] A. Voss, Imaging Moisture Flows in Cement-Based Materials Using Electrical Capacitance Tomography, Ph.D. thesis, University of Eastern Finland, 2020.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.