×

zbMATH — the first resource for mathematics

Dynamic simulation of a coated microbubble in an unbounded flow: response to a step change in pressure. (English) Zbl 1383.76347
Summary: A numerical method is developed to study the dynamic behaviour of an encapsulated bubble when the viscous forces of the surrounding liquid are accounted for. The continuity and Navier-Stokes equations are solved for the liquid, whereas the coating is described as a viscoelastic shell with bending resistance. The Galerkin Finite Element Methodology is employed for the spatial discretization of the flow domain surrounding the bubble, with the standard staggered grid arrangement that uses biquadratic and bilinear Lagrangian basis functions for the velocity and pressure in the liquid, respectively, coupled with a superparametric scheme with \(B\)-cubic splines as basis functions pertaining to the location of the interface. The spine method and the elliptic mesh generation technique are used for updating the mesh points in the interior of the flow domain as the shape of the interface evolves with time, with the latter being distinctly superior in capturing severely distorted shapes. The stabilizing effect of the liquid viscosity is demonstrated, as it alters the amplitude of the disturbance for which a bubble deforms and/or collapses. For a step change in the far-field pressure the dynamic evolution of the microbubble is captured until a static equilibrium is achieved. Static shapes that are significantly compressed are captured in the post-buckling regime, leading to symmetric or asymmetric shapes, depending on the relative dilatation to bending stiffness ratio. As the external overpressure increases, shapes corresponding to all the solution families that were captured evolve to exhibit contact as the two poles approach each other. Shell viscosity prevents jet formation by relaxing compressive stresses and bending moments around the indentation generated at the poles due to shell buckling. This behaviour is conjectured to be the inception process leading to static shapes with contact regions.
MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76Z05 Physiological flows
76T10 Liquid-gas two-phase flows, bubbly flows
92C35 Physiological flow
PDF BibTeX Cite
Full Text: DOI
References:
[1] Babuska, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 179-192, (1973) · Zbl 0258.65108
[2] Barthes-Biesel, D.; Diaz, A.; Dhenin, E., Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation, J. Fluid Mech, 460, 211-222, (2002) · Zbl 1066.74023
[3] Barthes-Biesel, D.; Sgaier, H., Role of membrane viscosity in the orientation and deformation of a spherical capsule in shear flow, J. Fluid Mech., 160, 119-135, (1985) · Zbl 0624.76140
[4] Blake, J. R.; Hooton, M. C.; Robinson, P. B.; Tong, R. P., Collapsing cavities, toroidal bubbles and jet impact, Phil. Trans. R. Soc. Lond. A, 355, 537-550, (1997) · Zbl 0893.76009
[5] Blake, J. R.; Keen, G. S.; Tong, R. P.; Wilson, M., Acoustic cavitation: the fluid dynamics of non-spherical bubbles, Phil. Trans. R. Soc. Lond. A, 357, 251-267, (1999) · Zbl 1013.76074
[6] Chatzidai, N.; Giannousakis, A.; Dimakopoulos, Y.; Tsamopoulos, J., On the elliptic mesh generation in domains containing multiple inclusions and undergoing large deformations, J. Comput. Fluids, 228, 1980-2011, (2009) · Zbl 1165.65389
[7] Chen, H.; Kreider, W.; Brayman, A. A.; Bailey, M. R.; Matula, T. J., Blood vessel deformations on microsecond time scales by ultrasonic cavitation, Phys. Rev. Lett., 106, 3, (2011)
[8] Chen, T.-Y.; Tsamopoulos, J., Nonlinear dynamics of capillary bridges: theory, J. Fluid Mech., 255, 373-409, (1993) · Zbl 0794.76034
[9] Christodoulou, K. N.; Scriven, L. E., Discretization of free surface flows and other moving boundary problems, J. Comput. Phys., 99, 39-55, (1992) · Zbl 0743.76050
[10] Church, C. C., The effects of an elastic solid surface layer on the radial pulsations of gas bubbles, J. Acoust. Soc. Am., 97, 1510-1521, (1995)
[11] Dear, J. P.; Field, J. E., A study of the collapse of an array of cavities, J. Fluid Mech., 19, 409-425, (1988)
[12] De Jong, N.; Emmer, M.; Chin, C. T.; Bouakaz, A.; Mastik, F.; Lohse, D.; Versluis, M., ‘Compression-only’ behavior of phospholipid-coated contrast bubbles, Ultrasound Med. Biol., 33, 4, 653-656, (2007)
[13] Dimakopoulos, Y.; Tsamopoulos, J., A quasi-elliptic transformation for moving boundary problems with large anisotropic deformations, J. Comput. Phys., 192, 494-522, (2003) · Zbl 1047.76043
[14] Doinikov, A., Translational motion of a bubble undergoing shape oscillations, J. Fluid Mech., 501, 1-24, (2004) · Zbl 1099.76070
[15] Dollet, B.; Van Der Meer, S. M.; Garbin, V.; De Jong, N.; Lohse, D.; Versluis, M., Nonspherical oscillations of ultrasound contrast agent microbubbles, Ultrasound Med. Biol., 34, 1465-1473, (2008)
[16] Elman, H.; Silvester, D.; Wathen, A., Finite Elements and Fast Iterative Solvers, (2005), Oxford Science Publications
[17] Ferrara, K.; Pollard, R.; Borden, M., Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery, Annu. Rev. Biomed. Engng, 9, 1, 415-447, (2007)
[18] Foteinopoulou, K.; Mavratzas, V.; Tsamopoulos, J., Numerical simulation of bubble growth in Newtonian viscoelastic filaments undergoing stretching, J. Non-Newtonian Fluid Mech., 122, 177-200, (2004) · Zbl 1143.76329
[19] Katiyar, A.; Sarkar, K., Excitation threshold for subharmonic generation from contrast microbubbles, J. Acoust. Soc. Am., 130, 5, 3137-3147, (2011)
[20] Kaufmann, B. A.; Wei, K.; Linder, J. R., Contrast echocardiography, Curr. Probl. Cardiol., 32, 2, 51-96, (2007)
[21] Khismatullin, D. B.; Nadim, A., Radial oscillations of encapsulated microbubbles, Phys. Fluids, 14, 3534-3556, (2002) · Zbl 1185.76198
[22] Kistler, S. F. & Scriven, L. E.1983Coating Flows in Computational Analysis of Polymer Processing (ed. Pearson, J. R. A. & Richardson, S. M.), chap. 8, pp. 24-299. Applied Science Publishers.
[23] Knoche, S.; Kierfeld, J., Buckling of spherical capsules, Phys. Rev. E, 84, 4, (2011)
[24] Lauterborn, W.; Bolle, H., Experimental investigations of cavitation-bubble collapse in the neighborhood of a solid boundary, J. Fluid Mech., 72, 2, 391-399, (1975)
[25] Liu, Y.; Sugiyama, K.; Takagi, S.; Matsumoto, Y., Numerical study on the shape oscillation of an encapsulated microbubble in ultrasound field, Phys. Fluids, 23, (2011)
[26] Lytra, A.; Pelekasis, N., Static response and stability of coated microbubbles – multiplicity of solutions and parameter estimation, Fluid Dyn. Res., 46, (2014)
[27] Marmottant, P.; Bouakaz, A.; De Jong, N.; Quilliet, C., Buckling resistance of solid shell bubbles under ultrasound, J. Acoust. Soc. Am., 129, 3, 1231-1239, (2011)
[28] Marmottant, P.; Van Der Meer, S.; Emmer, M.; Versluis, M.; De Jong, N.; Hilgenfeldt, S.; Lohse, D., A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture, J. Acoust. Soc. Am., 118, 6, 3499, (2005)
[29] Notz, P. K.; Basaran, O. A., Dynamics of drop formation in an electric field, J. Colloid Interface Sci., 213, 1, 218-237, (1999)
[30] Notz, P. K.; Basaran, O. A., Dynamics and breakup of contracting liquid filament, J. Fluid Mech., 512, 223-256, (2004) · Zbl 1163.76356
[31] Overvelde, M.2010 Ultrasound contrast agents: dynamics of coated bubbles. PhD thesis, University of Twente, Netherlands.
[32] Patzek, T. W.; Basaran, O. A.; Benner, R. E.; Scriven, L. E., Nonlinear oscillations of two-dimensional, rotating inviscid drops, J. Comput. Phys., 116, 3-25, (1995) · Zbl 0853.76090
[33] Pelekasis, N. A.; Tsamopoulos, J. A., Bjerknes forces between two bubbles. Part 1. Response to a step change in pressure, J. Fluid Mech., 254, 467-499, (1993) · Zbl 0780.76014
[34] Pelekasis, N. A.; Tsamopoulos, J. A., Bjerknes forces between two bubbles. Part 2. Response to an oscillatory pressure field, J. Fluid Mech., 254, 501-527, (1993) · Zbl 0780.76014
[35] Pelekasis, N. A.; Tsamopoulos, J. A.; Manolis, G. D., A hybrid finite-boundary element method for inviscid flows with free surface, J. Comput. Phys., 101, 231-251, (1992) · Zbl 0760.76056
[36] Pozrikidis, C., Effect of membrane bending stiffness on the deformation of capsules in simple shear flow, J. Fluid Mech., 440, 269-291, (2001) · Zbl 1107.74307
[37] Qin, S.; Ferrara, K. W., Acoustic response of compliable microvessels containing ultrasound contrast agents, Phys. Med. Biol., 51, 5065-5088, (2006)
[38] Ryskin, G.; Leal, L. G., Orthogonal mapping, J. Comput. Phys., 50, 71-100, (1983) · Zbl 0579.65123
[39] Shi, W. T.; Forsberg, F., Ultrasonic characterization of the nonlinear properties of contrast microbubbles, Ultrasound Med. Biol., 26, 1, 93-104, (2000)
[40] Popinet, S.; Zaleski, S., Bubble collapse near a solid boundary: a numerical study of the influence of viscosity, J. Fluid Mech., 464, 137-163, (2002) · Zbl 1019.76018
[41] Saad, Y., Iterative Methods for Sparse Linear Systems, (1996), PWS · Zbl 1002.65042
[42] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869, (1986) · Zbl 0599.65018
[43] Saito, H.; Scriven, L. E., Study of coating flow by the finite element method, J. Comput. Phys., 42, 53-76, (1981) · Zbl 0466.76035
[44] Sarkar, K.; Shi, W. T.; Chatterjee, D.; Forsberg, F., Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation, J. Acoust. Soc. Am., 118, 1, 539-550, (2005)
[45] Takagi, S.; Matsumoto, Y.; Huang, H., Numerical analysis of a single rising bubble using boundary-fitted coordinate system, JSME Intl J., B40, 42-50, (1997)
[46] Thomas, D. H.; Looney, P.; Steel, R.; Pelekasis, N.; Mcdicken, W. N.; Anderson, T.; Sboros, V., Acoustic detection of microbubble resonance, Appl. Phys. Lett., 94, 24, (2009)
[47] Timoshenko, P.; Woinowsky-Krieger, S., Theory of Plates and Shells, (1959), McGraw-Hill · Zbl 0114.40801
[48] Tsiglifis, K.; Pelekasis, N., Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects: effect of internal overpressure, Phys. Fluids, 19, (2007) · Zbl 1182.76777
[49] Tsiglifis, K.; Pelekasis, N., Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: the effect of membrane constitutive law, J. Acoust. Soc. Am., 123, 6, 4059-4070, (2008)
[50] Tsiglifis, K.; Pelekasis, N., Parametric stability and dynamic buckling of encapsulated microbubble subject to acoustic disturbances, Phys. Fluids, 23, (2011)
[51] Tsiglifis, K.; Pelekasis, N., Simulations of insonated contrast agents: saturation and transient break-up, Phys. Fluids, 25, (2013)
[52] Tsiveriotis, K.; Brown, R. A., Boundary-conforming mapping applied to computations of highly deformed solidification interfaces, Intl J. Numer. Meth. Fluids, 14, 981-1003, (1992) · Zbl 0753.76106
[53] Van Der Meer, M.; Dollet, B.; Voormolen, M. M.; Chin, C. T.; Bouakaz, A.; De Jong, N.; Versluis, M.; Lohse, D., Microbubble spectroscopy of ultrasound contrast agents, J. Am. Stat. Assoc., 121, 648, (2007)
[54] Vos, H. J.; Dollet, B.; Bosch, J. G.; Versluis, M.; De Jong, N., Nonspherical vibrations of microbubbles in contact with a wall: a pilot study at low mechanical index, Ultrasound Med. Biol., 34, 4, 685-688, (2008)
[55] Widjaja, E.; Liu, N-C.; Li, M.; Collins, R. T.; Basaran, O. A.; Harris, M. T., Dynamics of sessible droplet evaporation: a comparison of the spine and the elliptic mesh generation methods, Comput. Chem. Engng, 31, 219-232, (2007)
[56] Zarda, P. R.; Chien, S.; Skalak, R., Elastic deformations of red blood cells, J. Biomech., 10, 211-221, (1977) · Zbl 0388.73048
[57] Zhao, S.; Ferrara, K. W.; Dayton, P. A., Asymmetric oscillation of adherent targeted ultrasound contrast agents, Appl. Phys. Lett., 87, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.