×

Scale interactions in a mixing layer - the role of the large-scale gradients. (English) Zbl 1382.74045


MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Attili, A. & Bisetti, F.2012Statistics and scaling of turbulence in a spatially developing mixing layer at <![CDATA \([Re_{{\it\lambda}}=250]]\)>. Phys. Fluids24, 035109.10.1063/1.3696302 · doi:10.1063/1.3696302
[2] Attili, A. & Bisetti, F.2013Fluctuations of a passive scalar in a turbulent mixing layer. Phys. Rev. E88 (3), 033013.10.1103/PhysRevE.88.033013 · Zbl 1290.80024 · doi:10.1103/PhysRevE.88.033013
[3] Attili, A., Cristancho, J. C. & Bisetti, F.2014Statistics of the turbulent/non-turbulent interface in a spatially developing mixing layer. J. Turbul.15 (9), 555-568.10.1080/14685248.2014.919394 · doi:10.1080/14685248.2014.919394
[4] Bandyopadhyay, P. R. & Hussain, K. M. F.1984The coupling between scales in shear flows. Phys. Fluids27, 2221-2228.10.1063/1.864901 · doi:10.1063/1.864901
[5] Batchelor, G. K. & Townsend, A. A.1949The nature of turbulent motion at large wave-numbers. Proc. R. Soc. Lond. A199, 238-255.10.1098/rspa.1949.0136 · Zbl 0036.25602 · doi:10.1098/rspa.1949.0136
[6] Bell, J. & Mehta, R.1990Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J.28, 2034-2042.10.2514/3.10519 · doi:10.2514/3.10519
[7] Bernardini, M. & Pirozzoli, S.2011Inner/outer layer interactions in turbulent boundary layers: A refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids23, 061701.
[8] Brown, G. L. & Roshko, A.1974On density effects and large structure in turbulent mixing layers. J. Fluid Mech.64 (04), 775-816.10.1017/S002211207400190XS002211207400190X · Zbl 1416.76061 · doi:10.1017/S002211207400190X
[9] Buxton, O. R. H.2011 Fine scale features of turbulent shear flows. PhD thesis, Imperial College London.
[10] Buxton, O. R. H. & Ganapathisubramani, B.2014Concurrent scale interactions in the far-field of a turbulent mixing layer. Phys. Fluids26, 125106.10.1063/1.4903970 · doi:10.1063/1.4903970
[11] Buxton, O. R. H., de Kat, R. & Ganapathisubramani, B.2013The convection of large and intermediate scale fluctuations in a turbulent mixing layer. Phys. Fluids25, 125105.10.1063/1.4837555 · doi:10.1063/1.4837555
[12] Chung, D. & McKeon, B. J.2010Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech.661, 341-364.10.1017/S0022112010002995S0022112010002995 · Zbl 1205.76146 · doi:10.1017/S0022112010002995
[13] Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H.2008High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys.227 (15), 7125-7159.10.1016/j.jcp.2008.03.0272433965 · Zbl 1201.76139 · doi:10.1016/j.jcp.2008.03.027
[14] Elsinga, G. E. & Marusic, I.2010Universal aspects of small-scale motions in turbulence. J. Fluid Mech.662, 514-539.10.1017/S0022112010003381 · Zbl 1205.76123 · doi:10.1017/S0022112010003381
[15] Ferchichi, M. & Tavoularis, S.2000Reynolds number effects on the fine structure of uniformly sheared turbulence. Phys. Fluids12, 2942-2953.10.1063/1.1311610 · Zbl 1184.76159 · doi:10.1063/1.1311610
[16] Ferré, J. A., Mumford, J. C., Savill, A. M. & Giralt, F.1990Three-dimensional large-eddy motions and fine-scale activity in a plane turbulent wake. J. Fluid Mech.210, 371-414.10.1017/S0022112090001331S0022112090001331 · doi:10.1017/S0022112090001331
[17] Fiscaletti, D., Ganapathisubramani, B. & Elsinga, G. E.2015Amplitude and frequency modulation of the small scales in a jet. J. Fluid Mech.772, 756-783.10.1017/jfm.2015.227S002211201500227X · doi:10.1017/jfm.2015.227
[18] Ganapathisubramani, B., Hutchins, N., Monty, J. P., Chung, D. & Marusic, I.2012Amplitude and frequency modulation in wall turbulence. J. Fluid Mech.712, 61-91.10.1017/jfm.2012.398S00221120120039892999008 · Zbl 1275.76138 · doi:10.1017/jfm.2012.398
[19] Germano, M., Piomelli, U., Moin, P. & Cabot, W. H.1991A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A3, 1760-1765.10.1063/1.857955 · Zbl 0825.76334 · doi:10.1063/1.857955
[20] Hunt, J. C. R., Eames, I., Westerweel, J., Davidson, P. A., Voropayev, S., Fernando, J. & Braza, M.2010Thin shear layers - The key to turbulence structure?J. Hydro. Environ. Res.4, 75-82.10.1016/j.jher.2010.04.010 · doi:10.1016/j.jher.2010.04.010
[21] Hunt, J. C. R., Ishihara, T., Worth, N. A. & Kaneda, T.2014Thin shear layer structures in high Reynolds number turbulence. Flow Turbul. Combust.92, 607-649.10.1007/s10494-013-9518-0 · doi:10.1007/s10494-013-9518-0
[22] Hutchins, N. & Marusic, I.2007Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A365, 647-664.10.1098/rsta.2006.1942 · Zbl 1152.76421 · doi:10.1098/rsta.2006.1942
[23] Ishihara, T., Kaneda, Y. & Hunt, J. C. R.2013Thin shear layers in high Reynolds number turbulence - DNS results. Flow Turbul. Combust.91, 895-929.10.1007/s10494-013-9499-z · doi:10.1007/s10494-013-9499-z
[24] Jiménez, J.2012Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech.44, 27-45.10.1146/annurev-fluid-120710-1010392882589 · Zbl 1388.76089 · doi:10.1146/annurev-fluid-120710-101039
[25] Kim, J. & Moin, P.1985Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys.59 (2), 308-323.10.1016/0021-9991(85)90148-20796611 · Zbl 0582.76038 · doi:10.1016/0021-9991(85)90148-2
[26] Kolmogorov, A. N.1941aEnergy dissipation in locally isotropic turbulence. C. R. Acad. Sci. URSS32, 16. · Zbl 0063.03292
[27] Kolmogorov, A. N.1941bThe local structure of turbulence in incompressible viscous fluid for very large Reynolds. C. R. Acad. Sci. URSS30, 301. · JFM 67.0850.06
[28] Lilly, D. K.1967The representation of small-scale turbulence in numerical simulation experiments. In Proceedings of the IBM Scientific Computing Symposium on Environmental Science, Yorktown Heights, New York, p. 195.
[29] Marusic, I., Mathis, R. & Hutchins, N.2010Predictive model for wall-bounded turbulent flow. Science329, 193-196.10.1126/science.11887652674757 · Zbl 1226.76015 · doi:10.1126/science.1188765
[30] Mathis, R., Hutchins, N. & Marusic, I.2009aLarge-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech.628, 311-337.10.1017/S0022112009006946S0022112009006946 · Zbl 1181.76008 · doi:10.1017/S0022112009006946
[31] Mathis, R., Hutchins, N. & Marusic, I.2011A predictive inner – outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech.681, 537-566.10.1017/jfm.2011.216S0022112011002163 · Zbl 1241.76296 · doi:10.1017/jfm.2011.216
[32] Mathis, R., Monty, J., Hutchins, N. & Marusic, I.2009bComparison of large-scale amplitude modulation in turbulent boundary layers, pipes and channel flows. Phys. Fluids21, 111703.10.1063/1.3267726 · Zbl 1183.76346 · doi:10.1063/1.3267726
[33] Meneveau, C. & Katz, J.2000Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech.32, 1-32.10.1146/annurev.fluid.32.1.11744302 · Zbl 0988.76044 · doi:10.1146/annurev.fluid.32.1.1
[34] Ol’Shanskii, M. A. & Staroverov, V. M.2000On simulation of outflow boundary conditions in finite difference calculations for incompressible fluid. Intl J. Numer. Meth. Fluids33 (4), 499-534.10.1002/1097-0363(20000630)33:4<499::AID-FLD19>3.3.CO;2-Z · Zbl 0959.76062 · doi:10.1002/1097-0363(20000630)33:4<499::AID-FLD19>3.3.CO;2-Z
[35] Pope, S. B.2000Turbulent Flows. Cambridge University Press.10.1017/CBO9780511840531 · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[36] Rogers, M. M. & Moser, R. D.1994Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids6, 903.10.1063/1.868325 · Zbl 0825.76329 · doi:10.1063/1.868325
[37] Schlatter, P. & Örlü, R.2010Quantifying the interaction between large and small scales in wall-bounded turbulent flows: A note of caution. Phys. Fluids22, 051704.10.1063/1.3432488 · Zbl 1190.76110 · doi:10.1063/1.3432488
[38] Shen, X. & Warhaft, Z.2000The anisotropy of the small scale structure in high Reynolds number (<![CDATA \([R_{{\it\lambda}}]]\)><![CDATA \([{\sim}1000]]\)>) turbulent shear flow. Phys. Fluids12, 2976-2989.10.1063/1.1313552 · Zbl 1184.76500 · doi:10.1063/1.1313552
[39] Smagorinsky, J.1963General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weath. Rev.91, 99-164.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[40] Vernet, A., Kopp, G. A., Ferré, J. A. & Giralt, F.1999Three-dimensional structure and momentum transfer in a turbulent cylinder wake. J. Fluid Mech.210, 303-337.10.1017/S0022112099005807 · Zbl 0945.76507 · doi:10.1017/S0022112099005807
[41] Worth, N. A. & Nickels, T. B.2011Some characteristics of thin shear layers in homogeneous turbulent flow. Phil. Trans. R. Soc. Lond. A369, 709-722.10.1098/rsta.2010.0297 · Zbl 1219.76023 · doi:10.1098/rsta.2010.0297
[42] Yeung, P. K., Brasseur, J. G. & Wang, Q.1995Dynamics of direct large-small scale couplings in coherently forced turbulence: concurrent physical- and Fourier-space views. J. Fluid Mech.283, 43-95.10.1017/S0022112095002230S00221120950022301314720 · Zbl 0835.76040 · doi:10.1017/S0022112095002230
[43] Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M.1999Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech.387, 353-396.10.1017/S002211209900467X1693393 · Zbl 0946.76030 · doi:10.1017/S002211209900467X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.