×

Aeolian transport with collisional suspension. (English) Zbl 1152.76492

Summary: This paper considers the aeolian transport of sand by a wind so strong that the concentration of sand near the bed makes collisions between grains inevitable. It employs an improved model of such a collisional flow which includes turbulent suspension, viscous dissipation and new top boundary conditions that are validated by numerical calculations of collisionless trajectories.

MSC:

76T20 Suspensions
76T25 Granular flows
86A04 General questions in geophysics
74L05 Geophysical solid mechanics
74C99 Plastic materials, materials of stress-rate and internal-variable type

Software:

bvp4c
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, R.S. & Haff, P.K. 1991 Wind modification and bed response during saltation of sand in air. <i>Acta Mech.</i>, (Suppl. 1), 21–51.
[2] Bagnold, R.A. 1941 The physics of blown sand and desert dunes. London: Methuen.
[3] Campbell, C.S. 1993 The transition from fluid-like to solid-like behavior in granular flows. <i>Powders and grains 93</i> (ed. Thornton, C.), pp. 289–294, Amsterdam: Balkema
[4] Carnahan, N.F. & Starling, K.E. 1969 Equation of state for nonattracting rigid spheres. <i>J. Chem. Phys.</i>&nbsp;<b>51</b>, 635–636.
[5] Chapman, S. & Cowling, T.G. 1970 The mathematical theory of non-uniform gases. 3rd edn. Cambridge: Cambridge University Press. · Zbl 0063.00782
[6] Drew, D.A. 1975 Turbulent sediment transport over a flat bottom using momentum balance. <i>J. Appl. Mech.</i>&nbsp;<b>42</b>, 38–44.
[7] Drew, D.A. 1976 Production and dissipation of energy in turbulent flow of a particle–fluid mixture, with some results on drag reduction. <i>J. Appl. Mech.</i>&nbsp;<b>43</b>, 543–547. · Zbl 0404.76085
[8] Hanes, D.M. & Inman, D.L. 1985 Experimental evaluation of a dynamic yield criterion for granular fluid flows. <i>J. Geophys. Res.</i>&nbsp;<b>90</b>, 3670–3674.
[9] Hsu, T.-J., Jenkins, J.T. & Liu, P.L.-F. 2003 On two-phase sediment transport: dilute flow. <i>J. Geophys. Res.-Oceans</i>&nbsp;<b>108</b>, 3057–3070.
[10] Hsu, T.-J. 2004 On two-phase sediment transport: sheet flow of massive particles. <i>Proc. R. Soc. A</i>&nbsp;<b>460</b>, 2223–2250, (doi:10.1098/rspa.2003.1273). · Zbl 1329.76358
[11] Iversen, J.D. & Rasmussen, K.R. 1999 The effect of wind speed and bed slope on sand transport. <i>Sedimentology</i>&nbsp;<b>46</b>, 723–731.
[12] Jenkins, J.T. & Askari, E. 1991 Boundary conditions for rapid granular flows: phase interfaces. <i>J. Fluid Mech.</i>&nbsp;<b>223</b>, 497–508.
[13] Jenkins, J.T. & Hanes, D.M. 1998 Collisional sheet flows of sediment driven by a turbulent fluid. <i>Fluid Mech.</i>&nbsp;<b>370</b>, 29–52. · Zbl 0934.76093
[14] Louge, M.Y., Mastorakos, E. & Jenkins, J.T. 1991 The role of particle collisions in pneumatic transport. <i>J. Fluid Mech.</i>&nbsp;<b>231</b>, 345–359. · Zbl 0729.76089
[15] McEwan, I.K. & Willetts, B.B. 1991 Numerical model of the saltation cloud. <i>Acta Mech.</i>, (Suppl. 1), 53–66.
[16] McTigue, D.F. 1981 Mixture theory for suspended sediment transport. <i>J. Hydraulic. Div. ASCE</i>&nbsp;<b>107</b>, 659–673.
[17] Mei, R. 1992 An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. <i>Int. J. Multiphase Flow</i>&nbsp;<b>18</b>, 145–147. · Zbl 1144.76419
[18] Onoda, G.Y. & Liniger, E.G. 1990 Random loose packings of uniform spheres and the dilatancy onset. <i>Phys. Rev. Lett.</i>&nbsp;<b>64</b>, 2727–2730.
[19] Owen, P.R. 1964 Saltation of uniform grains in air. <i>J. Fluid Mech.</i>&nbsp;<b>20</b>, 225–242. · Zbl 0151.42703
[20] Richardson, J.F. & Zaki, W.N. 1954 Sedimentation and fluidization. <i>Trans. Inst. Chem. Eng.</i>&nbsp;<b>32</b>, 35–53.
[21] Rioual, F., Valance, A. & Bideau, D. 2003 Collision process of a bead on a two-dimensional bead packing: importance of the inter-granular contacts. <i>Europhys. Lett.</i>&nbsp;<b>61</b>, 194–200.
[22] Sangani, A.S., Mo, G.B., Tsao, H.K. & Koch, D.L. 1996 Simple shear flows of dense gas–solid suspensions at finite Stokes numbers. <i>J. Fluid Mech.</i>&nbsp;<b>313</b>, 309–341. · Zbl 0862.76088
[23] Sauermann, G., Kroy, K. & Herrmann, H.J. 2001 Continuum saltation model for sand dunes. <i>Phys. Rev. E</i>&nbsp;<b>64</b>, 031305.
[24] Shampine, L.F., Kierzenka, J. & Reichelt, M.W. 2000 Solving boundary value problems for ordinary differential equations in Matlab with bvp4c. Seewww.mathworks.com/bvp_tutorial.
[25] Sørensen, M. 2004 On the rate of aeolian sand transport. <i>Geomorphology</i>&nbsp;<b>59</b>, 53–62.
[26] Sørensen, M. & McEwan, I. 1996 On the effect of mid-air collisions on aeolian saltation. <i>Sedimentology</i>&nbsp;<b>43</b>, 65–76.
[27] Ungar, J.E. & Haff, P.K. 1987 Steady state saltation in air. <i>Sedimentology</i>&nbsp;<b>34</b>, 289–299.
[28] Werner, B.T. 1990 A steady-state model of wind-blown sand transport. <i>J. Geol.</i>&nbsp;<b>98</b>, 1–17.
[29] White, F. 1974 Viscous fluid flow. New York: McGraw-Hill. · Zbl 0356.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.