×

Mechanical models of artery walls. (English) Zbl 1139.74036

Summary: The article presents an up-to-date review and discussion of approaches used to examine the mechanical behavior of artery walls. The physiology of artery walls and its relation to the models is discussed. Presented models include the simplest 0d and 1d ones, but emphasis is put to the most sophisticated approaches which are based on the theory of 3d nonlinear elasticity. We also present an alternative approach which consists in simple delinearization of Koiter shell equations.

MSC:

74L15 Biomechanical solid mechanics
92C10 Biomechanics
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
92-02 Research exposition (monographs, survey articles) pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Antman SS (1995) Nonlinear problems of elasticity. Springer, New York · Zbl 0820.73002
[2] Ball JM (1977) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63(4):337–403 · Zbl 0368.73040 · doi:10.1007/BF00279992
[3] Balzani D, Neff P, Schröder J, Holzapfel GA (2006) A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int J Solids Struct 43(20):6052–6070 · Zbl 1120.74632 · doi:10.1016/j.ijsolstr.2005.07.048
[4] Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322 · Zbl 1161.74020 · doi:10.1007/s00466-006-0084-3
[5] Bergel DH (1961) The static elastic properties of the arterial wall. J Physiol 156(3):445–457
[6] Biazutti AC (1995) On a nonlinear evolution equation and its applications. Nonlinear Anal Theory Methods Appl 24(8):1221–1234 · Zbl 0828.34050 · doi:10.1016/0362-546X(94)00193-L
[7] Bischoff JE (2006) Reduced parameter formulation for incorporating fiber level viscoelasticity into tissue level biomechanical models. Ann Biomed Eng 34(7):1164–1172 · doi:10.1007/s10439-006-9124-6
[8] Bischoff JE, Arruda EA, Grosh K (2002) Finite element simulations of orthotropic hyperelasticity. Finite Elem Anal Des 38(10):983–998 · Zbl 1051.74041 · doi:10.1016/S0168-874X(02)00089-6
[9] Bischoff JE, Arruda EA, Grosh K (2002) A microstructurally based orthotropic hyperelastic constitutive law. J Appl Mech 69(5):570–579 · Zbl 1110.74344 · doi:10.1115/1.1485754
[10] Bischoff JE, Arruda EA, Grosh K (2004) A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech Model Mechanobiol 3(1):56–65 · doi:10.1007/s10237-004-0049-4
[11] Brossollet LJ, Vito RP (1996) A new approach to mechanical testing and modeling of biological tissues, with application to blood vessels. J Biomech Eng 118(4):433–439 · doi:10.1115/1.2796028
[12] Brown RE, Butler JP, Rogers RA, Leith DE (1994) Mechanical connections between elastin and collagen. Connect Tissue Res 30(4):295–308 · doi:10.3109/03008209409015044
[13] Burton AC (1954) Relation of structure to function of the tissues of the wall of blood vessels. Physiol Rev 34:619–642
[14] Canic S, Mikelic A (2003) Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries. SIAM J Appl Dyn Syst 2(3):431–463 · Zbl 1088.76077 · doi:10.1137/S1111111102411286
[15] Canic S, Lamponi D, Mikelic A, Tambaca J (2005) Self-consistent effective equations modeling blood flow in medium-to-large compliant arteries. Multiscale Model Simul 3(3):559–596 · Zbl 1081.35073 · doi:10.1137/030602605
[16] Canic S, Mikelic A, Tambaca J (2005) A two-dimensional effective model describing fluid-structure interaction in blood flow: analysis, simulation and experimental validation. C R Mech Acad Sci Paris 333(12):867–883
[17] Canic S, Hartley CJ, Rosenstrauch D, Tambaca J, Guidoboni G, Mikelic A (2006) Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics and experimental validation. Ann Biomed Eng 34(4):572–592 · doi:10.1007/s10439-005-9074-4
[18] Canic S, Tambaca J, Guidoboni G, Mikelic A, Hartley CJ, Rosenstrauch D, Humphrey JD (2006) Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J Appl Math 67(1):164–193 · Zbl 1121.35091 · doi:10.1137/060651562
[19] Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Methods Appl Mech Eng 194(42–44):4506–4527 · Zbl 1101.74027 · doi:10.1016/j.cma.2004.12.005
[20] Chakravarty S, Mandal PK, Mandal A (2004) Numerical simulation of unsteady two-layered pulsatile blood flow in a stenosed flexible artery: effect of peripheral layer viscosity. Math Model Anal 9(2):99–114 · Zbl 1236.76116
[21] Chuong CJ, Fung YC (1983) Three-dimensional stress distribution in arteries. J Biomech Eng 105(3):268–274 · doi:10.1115/1.3138417
[22] Chuong CJ, Fung YC (1984) Compressibility and constitutive equation of arterial wall in radial compression experiments. J Biomech 17(1):35–40 · doi:10.1016/0021-9290(84)90077-0
[23] Ciarlet PG (1988) Mathematical elasticity. Volume I: three-dimensional elasticity. Elsevier, Amsterdam · Zbl 0648.73014
[24] Ciarlet PG (2000) Mathematical elasticity. Vol. III, theory of shells. Elsevier, Amsterdam · Zbl 0953.74004
[25] Clark JM, Glagov S (1985) Transmural organization of the arterial media. The lamellar unit revisited. Arterioscler Thromb Vasc Biol 5:19–34
[26] Cole RT, Lucas CL, Cascio WE, Johnson TA (2005) A labview T M model incorporating an open-loop arterial impedance and a closed-loop circulatory system. Ann Biomed Eng 33(11):1555–1573 · doi:10.1007/s10439-005-7785-1
[27] Comninou M, Yannas IV (1976) Dependence of stress-strain nonlinearity of connective tissues on the geometry of collagen fibers. J Biomech 9(7):427–433 · doi:10.1016/0021-9290(76)90084-1
[28] Conlon MJ, Rusell DL, Mussivand T (2006) Development of a mathematical model of the human circulatory system. Ann Biomed Eng 34(9):1400–1413 · doi:10.1007/s10439-006-9164-y
[29] Davies PF, Spaan JA, Krams R (2005) Shear stress biology of the endothelium. Ann Biomed Eng 33(12):1714–1718 · doi:10.1007/s10439-005-8774-0
[30] Delfino A, Stergiopulos N, Moore JE, Meister J-J (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30(8):777–786 · doi:10.1016/S0021-9290(97)00025-0
[31] Demiray H, Vito RP (1983) On large periodic motions of arteries. J Biomech 16(8):643–648 · doi:10.1016/0021-9290(83)90114-8
[32] Demiray H, Vito RP (1991) A layered cylindrical shell model for an aorta. Int J Eng Sci 29(1):47–54 · Zbl 0761.73093 · doi:10.1016/0020-7225(91)90075-E
[33] Dixon SA, Heikes RG, Vito RP (2003) Constitutive modeling of porcine coronary arteries using designed experiments. J Biomech Eng 125(2):274–279 · doi:10.1115/1.1560138
[34] Dobrin PB (1999) Distribution of lamellar deformations: implications for properties of the arterial media. Hypertension 33(3):806–810
[35] Doyle JM, Dobrin PB (1971) Finite deformation analysis of the relaxed and contracted dog carotid artery. Microvasc Res 3(4):400–415 · doi:10.1016/0026-2862(71)90042-2
[36] Driessen NJB, Wilson W, Bouten CVC, Baaijens FPT (2004) A computational model for collagen fibre remodelling in the arterial wall. J Theor Biol 226(1):53–64 · doi:10.1016/j.jtbi.2003.08.004
[37] Dyson F (2004) Turning points. A meeting with Enrico Fermi. Nature 427:297 · doi:10.1038/427297a
[38] Evans LC (1998) Partial differential equations. American Mathematical Society, Providence
[39] Fernández ÁM, Milisic V, Quarteroni A (2005) Analysis of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic PDEs. Multisc Model Simul 4(1):215–236 · Zbl 1085.35095 · doi:10.1137/030602010
[40] Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41–43):5685–5706 · Zbl 1126.76029 · doi:10.1016/j.cma.2005.11.011
[41] Formaggia L, Veneziani A (2003) Reduced and multiscale models for the human cardiovascular system. Reports of Laboratory for Modeling and Scientific Computing MOX, Politecnica di Milano, 21
[42] Formaggia L, Nobile F, Quarteroni A, Veneziani A (1999) Multiscale modelling of the circulatory system: a preliminary analysis. Comput Vis Sci 2(2–3):75–83 · Zbl 1067.76624 · doi:10.1007/s007910050030
[43] Fung YC (1967) Elasticity of soft tissues in simple elongation. Am J Physiol Leg Content 231(6):1532–1544
[44] Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York
[45] Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol Heart Circ Physiol 237(5):H620–H631
[46] Fung YC, Liu SQ, Zhou JB (1993) Remodeling of the constitutive equation while a blood vessel remodels itself under stress. J Biomech Eng 115(4B):453–459 · doi:10.1115/1.2895523
[47] Gajewski H, Gröger K, Zacharias K (1974) Nichtlineare operatorgleichungen und operatordifferentialgleichungen. Akademie, Berlin · Zbl 0289.47029
[48] Gasser TC, Holzapfel GA (2002) A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation. Comput Mech 29(4–5):340–360 · Zbl 1146.74342 · doi:10.1007/s00466-002-0347-6
[49] Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35 · doi:10.1098/rsif.2005.0073
[50] Glagov S, Vito R, Giddens DP, Zarins CK (1992) Micro-architecture and composition of artery walls: relationship to location, diameter and the distribution of mechanical stress. J Hypertens Suppl 10(6):S101–S104 · doi:10.1097/00004872-199208001-00026
[51] Gleason RL, Humphrey JD (2005) A 2d constrained mixture model for arterial adaptations to large changes in flow, pressure and axial stretch. Math Med Biol 22(4):347–369 · Zbl 1080.92024 · doi:10.1093/imammb/dqi014
[52] Gosling RG, Budge MM (2003) Terminology for describing the elastic behavior of arteries. Hypertension 41(6):1180–1182 · doi:10.1161/01.HYP.0000072271.36866.2A
[53] Greenwald SE (2002) Pulse pressure and arterial elasticity. QJM: Int J Med 95(2):107–112 · doi:10.1093/qjmed/95.2.107
[54] Hamadiche M, Kizilova N (2005) Temporal and spatial instabilities of the flow in the blood vessels as multi-layered compliant tubes. Int J Dyn Fluids 1(1):1–24
[55] Haslach HW (2005) Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomech Model Mechanobiol 3(3):172–189 · doi:10.1007/s10237-004-0055-6
[56] Hayashi K (2003) Mechanical properties of soft tissues and arterial walls. In: Holzapfel GA, Ogden RW (eds) Biomechanics of soft tissue in cardiovascular system. Springer, New York, pp 15–64 · Zbl 1039.92005
[57] Hayashi K, Washizu T, Tsushima N, Kiraly RJ, Nose Y (1981) Mechanical properties of aortas and pulmonary arteries of calves implanted with cardiac prostheses. J Biomech 14(3):173–182 · doi:10.1016/0021-9290(81)90024-5
[58] Hayashi K, Stergiopulos N, Meister J-J, Greenwald SE, Rachev A (2001) Techniques in the determination of the mechanical properties and constitutive laws of arterial walls. In: Leondes CT (ed) Cardiovascular techniques. Biomechanical systems: techniques and applications, vol 2. CRC Press, Boca Raton
[59] Hokanson J, Yazdani S (1997) A constitutive model of the artery with damage. Mech Res Commun 24(2):151–159 · Zbl 0893.73049 · doi:10.1016/S0093-6413(97)00007-4
[60] Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, Chichester · Zbl 0980.74001
[61] Holzapfel GA (2003) Structural and numerical models for the (visco)elastic response of arterial walls with residual stresses. In: Holzapfel GA, Ogden RW (eds) Biomechanics of soft tissue in cardiovascular system. Springer, New York, pp 109–184 · Zbl 1151.74383
[62] Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite stains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190(34):4379–4403 · doi:10.1016/S0045-7825(00)00323-6
[63] Holzapfel GA, Gasser TC (2007) Computational stress-deformation analysis of arterial walls including high-pressure response. Int J Cardiol 116(1):78–85 · doi:10.1016/j.ijcard.2006.03.033
[64] Holzapfel GA, Weizsäcker HW (1998) Biomechanical behavior of the arterial wall and its numerical characterization. Comput Biol Med 28(4):377–392 · doi:10.1016/S0010-4825(98)00022-5
[65] Holzapfel GA, Ogden RW (eds) (2006) Mechanics of biological tissue. Springer, New York
[66] Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1-3):1–48 · Zbl 1023.74033 · doi:10.1023/A:1010835316564
[67] Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A: Solids 21(3):441–463 · Zbl 1100.74597 · doi:10.1016/S0997-7538(01)01206-2
[68] Holzapfel GA, Gasser TC, Ogden RW (2004) Comparison of a multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. J Biomech Eng 126(2):264–275 · doi:10.1115/1.1695572
[69] Horgan CO, Saccomandi G (2003) A description of arterial wall mechanics using limiting chain extensibility constitutive models. Biomech Model Mechanobiol 1(4):251–266 · doi:10.1007/s10237-002-0022-z
[70] Hron J (2001) Fluid structure interaction with applications in biomechanics. PhD thesis, Faculty of Mathematics and Physics, Charles University in Prague · Zbl 1145.74010
[71] Humphrey JD (1995) Mechanics of the arterial wall: review and directions. Crit Rev Biomed Eng 23(1-2):1–162
[72] Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York
[73] Humphrey JD (2003) Continuum biomechanics of soft biological tissues. Proc R Soc A: Math Phys Eng Sci 459(2029):3–46 · Zbl 1116.74385 · doi:10.1098/rspa.2002.1060
[74] Humphrey JD (2003) Intracranial saccular aneurysms. In: Holzapfel GA, Ogden RW (eds) Biomechanics of soft tissue in cardiovascular system. Springer, New York, pp 185–220
[75] Humphrey JD, Canham PB (2000) Structure, mechanical properties, and mechanics of intracranial saccular aneurysms. J Elast 61(1–3):49–81 · Zbl 0973.92016 · doi:10.1023/A:1010989418250
[76] Humphrey JD, Na S (2002) Elastodynamics and arterial wall stress. Ann Biomed Eng 30(4):509–523 · doi:10.1114/1.1467676
[77] Itskov M, Ehret AE, Mavrilas D (2006) A polyconvex anisotropic strain-energy function for soft collagenous tissues. Biomech Model Mechanobiol 5(1):17–26 · doi:10.1007/s10237-005-0006-x
[78] John LR (2004) Forward electrical transmission line model of the human arterial system. Med Biol Eng Comput 42(3):312–321 · doi:10.1007/BF02344705
[79] Kalita P (2005) Algorithms for solving nonlinear problems in artery dymamics. PhD thesis, Jagiellonian University, Cracow
[80] Kalita P, Schaefer R (2005) Dynamics of the weakly nonlinear Koiter shell. In: Pietraszkiewicz W, Szymczak C (eds) Shell structures: theory and applications. Taylor & Francis/Balkema, London, pp 125–128
[81] Kalita P, Schaefer R, Paszyński M (2006) Nonlinear models of artery dynamics. In: Fotiadis DI, Massalas CV (eds) Mathematical methods in scattering theory and biomedical engineering. World Scientific, London, pp 320–334 · Zbl 1106.92019
[82] Kasyanov VA, Rachev AI (1980) Deformation of blood vessels upon stretching, internal pressure, and torsion. Mech Compos Mater 16(1):76–80 · doi:10.1007/BF00618816
[83] Keener J, Sneyd J (1998) Mathematical physiology. Springer, New York · Zbl 0913.92009
[84] Kleinstreuer C, Hyun S, Archie JP (2000) Computer-aided design and optimal surgical reconstruction of the carotid artery bifurcation. In: Martonen TB (ed) Medical application of computer modeling: cardiovascular and ocular systems. WIT Press, London
[85] Kreiss HO, Peterson NA, Yström J (2002) Difference approximations for the second order wave equation. SIAM J Numer Anal 40(5):1940–1967 · Zbl 1033.65072 · doi:10.1137/S0036142901397435
[86] Laganá K, Balossino R, Migliavacca F, Pennati G, Bove EL, de Leval MR, Dubini G (2005) Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J Biomech 38(5):1129–1141 · doi:10.1016/j.jbiomech.2004.05.027
[87] Langille BL, Bendeck MP, Keeley FW (1989) Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am J Physiol Heart Circ Physiol 256(4):H931–H939
[88] Li Z, Kleinstreuer C (2005) A new wall stress equation for aneurysm-rupture prediction. Ann Biomed Eng 33(2):209–213 · doi:10.1007/s10439-005-8979-2
[89] Lieber BB (2000) Arterial macrocirculatory hemodynamics. In: Bronzino J (ed) The biomedical engineering handbook, vol 1, 2nd edn. CRC Press, Boca Raton
[90] Ling SC, Chow CH (1977) The mechanics of corrugated collagen fibrils in arteries. J Biomech 10(2):71–77 · doi:10.1016/0021-9290(77)90070-7
[91] Mase GT, Mase GE (1999) Continuum mechanics for engineers. CRC Press, Boca Raton · Zbl 0991.74500
[92] Matsumoto T, Hayashi K (1994) Mechanical and dimensional adaptation of rat aorta to hypertension. J Biomech Eng 116(3):278–283 · doi:10.1115/1.2895731
[93] Mohan D, Melvin JW (1983) Failure properties of passive human aortic tissue. ii–biaxial tension tests. J Biomech Eng 16(1):31–44 · doi:10.1016/0021-9290(83)90044-1
[94] Moore JE, Delfino A, Doriot P-A, Dorsaz P-A, Rutishauser W (2001) Arterial fluid dynamics: the relationship to atherosclerosis and application in diagnostics. In: Leondes CT (ed) Biofluid methods in vascular and pulmonary systems. Biomechanical systems techniques and applications, vol 4. CRC Press, Boca Raton
[95] Nerem RM (1992) Vascular fluid mechanics, the arterial wall, and atherosclerosis. J Biomech Eng 114(3):274–282 · doi:10.1115/1.2891384
[96] Ogden RW (2003) Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. In: Holzapfel GA, Ogden RW (eds) Biomechanics of soft tissue in cardiovascular system. Springer, New York, pp 65–108 · Zbl 1151.74386
[97] Ogden RW (2003) Nonlinear elasticity with applications to material modelling. Lecture notes 6. IPPT PAN and CoE AMAS, Warsaw
[98] Olsson T, Stålhand J, Klarbring A (2006) Modeling initial strain distribution in soft tissues with application to arteries. Biomech Model Mechanobiol 5(1):27–38 · doi:10.1007/s10237-005-0008-8
[99] Olufsen MS (1998) Modeling the arterial system with reference to an anesthesia simulator. PhD thesis, Department of Mathematics, Roskilde University
[100] Olufsen MS, Nadim A (2004) On deriving lumped models for blood flow and pressure in the systemic arteries. Math Biosci Eng 1(1):61–80 · Zbl 1136.76720
[101] Ottesen JT, Olufsen MS, Larsen JK (2004) Mathematical models in human physiology. Society for Industrial and Applied Mathematics, Philadelphia
[102] Paszynski M, Schaefer R (2005) The modified fluid particle model for non-linear Casson fluid and its parallel distributed implementation. Comput Methods Appl Mech Eng 194(42–44):4386–4410 · Zbl 1092.76051 · doi:10.1016/j.cma.2004.11.008
[103] Perktold K, Leuprecht A, Prosi M, Berk T, Czerny M, Trubel W, Schima H (2002) Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses. Ann Biomed Eng 30(4):447–460 · doi:10.1114/1.1477445
[104] Pontrelli G, Rossoni E (2003) Numerical modelling of the pressure wave propagation in the arterial flow. Int J Numer Methods Fluids 43(6-7):651–671 · Zbl 1032.76728 · doi:10.1002/fld.494
[105] Quaglini V, Vena P, Contro R (2004) A discrete-time approach to the formulation of constitutive models for viscoelastic soft tissues. Biomech Model Mechanobiol 3(2):85–97 · doi:10.1007/s10237-004-0050-y
[106] Quarteroni A, Formaggia L (2004) Mathematical modelling and numerical simulation of the cardiovascular system. In: Ayache N (ed) Handbook of numerical analysis, volume XII: special volume: computational models for the human body. Elsevier, Amsterdam
[107] Quarteroni A, Veneziani A (2003) Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations. Multiscale Model Simul 1(2):173–195 · Zbl 1060.35003 · doi:10.1137/S1540345902408482
[108] Quarteroni A, Tuveri M, Veneziani A (2000) Computational vascular fluid dynamics: problems, models and methods. Comput Vis Sci 2:163–197 · Zbl 1096.76042 · doi:10.1007/s007910050039
[109] Quarteroni A, Ragni S, Veneziani A (2001) Coupling between lumped and distributed models for blood flow problems. Comput Vis Sci 4(2):111–124 · Zbl 1097.76615 · doi:10.1007/s007910100063
[110] Rachev A (1997) Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J Biomech 30(8):819–827 · doi:10.1016/S0021-9290(97)00032-8
[111] Rachev A (2000) A model of arterial adaptation to alterations in blood flow. J Elast 61(1-3):83–111 · Zbl 1071.74660 · doi:10.1023/A:1010800703478
[112] Rachev A (2003) Remodeling of arteries in response to changes in their mechnical environment. In: Holzapfel GA, Ogden RW (eds) Biomechanics of soft tissue in cardiovascular system. Springer, New York, pp 221–272 · Zbl 1151.74388
[113] Rachev A, Hayashi K (1999) Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann Biomed Eng 27(4):459–468 · doi:10.1114/1.191
[114] Richardson PD (2002) Biomechanics of plaque rupture: progress, problems, and new frontiers. Ann Biomed Eng 30(4):524–536 · doi:10.1114/1.1482781
[115] Schaefer R, Sedziwy S (2000) Filtration in cohesive soils: numerical approach. CAMES 6:15–26
[116] Schneck DJ (2000) An outline of cardiovascular structure and function. In: Bronzino J (ed) The biomedical engineering handbook, vol 1, 2nd edn. CRC Press, Boca Raton
[117] Segers P, Stergiopulos N, Verdonck P, Verhoeven R (1997) Assessment of distributed arterial network models. Med Biol Eng Comput 35(6):729–736 · doi:10.1007/BF02510985
[118] Shadwick RE (1999) Mechanical design in arteries. J Exp Biol 202(23):3305–3313 · Zbl 0957.03061
[119] Shah AD, Humphrey JD (1999) Finite strain elastodynamics of intracranial saccular aneurysms. J Biomech 32(6):593–599 · doi:10.1016/S0021-9290(99)00030-5
[120] Silver FH, Horvath I, Foran DJ (2001) Viscoelasticity of the vessel wall: the role of collagen and elastic fibers. Crit Rev Biomed Eng 29(3):279–301
[121] Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51(1–3):177–208 · Zbl 0554.73036 · doi:10.1016/0045-7825(85)90033-7
[122] Simon BR, Kaufmann MV, McAfee MA, Baldwin AL, Wilson LM (1998) Identification and determination of material properties for porohyperelastic analysis of large arteries. J Biomech Eng 120(2):188–194 · doi:10.1115/1.2798301
[123] Solomon EP, Schmidt R, Ardragna P (1990) Human anatomy and physiology. Saunders College Publishing, Philadelphia
[124] Stålhand J, Klarbring A (2005) Aorta in vivo parameter identification using an axial force constraint. Biomech Model Mechanobiol 3(4):191–199 · doi:10.1007/s10237-004-0057-4
[125] Stålhand J, Klarbring A, Karlsson M (2004) Towards in vivo aorta material identification and stress estimation. Biomech Model Mechanobiol 2(3):169–186 · doi:10.1007/s10237-003-0038-z
[126] Stergiopulos N, Meister J-J (1996) Biomechanical and physiological aspects of arterial vasomotion. In: Jaffrin MY, Caro C (eds) Biological flows. Plenum, New York, pp 137–158
[127] Stergiopulos N, Westerhof BE, Westerhof N (1999) Total arterial inertance as the fourth element of the Windkessel model. Am J Physiol Heart Circ Physiol 276(1):H81–H88
[128] Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120(3):348–354 · doi:10.1115/1.2798001
[129] Takamizawa K, Hayashi K (1987) Strain energy density function and uniform strain hypothesis for arterial mechanics. J Biomech 20(1):7–17 · doi:10.1016/0021-9290(87)90262-4
[130] Tanaka TT, Fung YC (1974) Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J Biomech 7(4):357–370 · doi:10.1016/0021-9290(74)90031-1
[131] Timmons WD (2000) Cardiovascular models and control. In: Bronzino J (ed) The biomedical engineering handbook, vol 2, 2nd edn. CRC Press, Boca Raton
[132] Tucker WK, Janicki JS, Plowman F, Patel DJ (1969) A device to test mechanical properties of tissues and transducers. J Appl Physiol 26(5):656–658
[133] Ursino M, Cristalli C (2001) Techniques and applications of mathematical modeling for noninvasive blood pressure estimation. In: Leondes CT (ed) Cardiovascular techniques. Biomechanical systems: techniques and applications, vol 2. CRC Press, Boca Raton
[134] Usyk TP, McCulloch AD (2003) Computational methods for soft tissue biomechanics. In: Holzapfel GA, Ogden RW (eds) Biomechanics of soft tissue in cardiovascular system. Springer, New York, pp 273–342 · Zbl 1052.74056
[135] Vaishnav RN, Vassoughi J (1983) Estimation of residual stresses in aortic segments. In: Hall CW (ed) Biomedical engineering II, recent developments. Pergamon, New York, pp 330–333
[136] Vaishnav RN, Young JT, Patel DJ (1973) Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment. Circ Res 32(5):577–583
[137] Valenta J, Vitek K, Cihak R, Konvickova S, Sochor M, Horny L (2002) Age related constitutive laws and stress distribution in human main coronary arteries with reference to residual strain. Bio-Med Mater Eng 12(2):121–134
[138] van Dam EA, Dams SD, Peters GWM, Rutten MCM, Schurink GWH, Buth J, van de Vosse FN (2006) Determination of linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biorheology 43(6):695–707
[139] van de Vosse FN (2005) Wave propagation in arteries, coronary circulation or aneurysms. In: Kowalewski TA, van Steenhoven A, Nowicki A (eds) Materials of blood flow–modelling and diagnostics advanced course and workshop–BF 2005. Institute of Fundamental Technological Research, Warsaw
[140] van de Vosse FN, de Hart J, van Oijen CHGA, Bessems D, Gunther TWM, Segal A, Wolters BJBM, Stijnen JMA, Baaijens FPT (2003) Finite-element-based computational methods for cardiovascular fluid-structure interaction. J Eng Math 47(3-4):335–368 · Zbl 1057.74047 · doi:10.1023/B:ENGI.0000007985.17625.43
[141] Veress AI, Vince DG, Anderson PM, Cornhill JF, Herderick EE, Klingensmith JD, Kuban BD, Greenberg NL, Thomas JD (2000) Vascular mechanics of the coronary artery. Z Kardiol 89(14):S092–S100 · doi:10.1007/s003920070106
[142] Vito RP, Dixon SA (2003) Blood vessel constitutive models–1995–2002. Annu Rev Biomed Eng 5(4–5):413–439 · doi:10.1146/annurev.bioeng.5.011303.120719
[143] von Maltzahn WW, Warriyar RG, Keitzer WF (1984) Experimental measurements of elastic properties of media and adventitia of bovine carotid arteries. J Biomech 17(11):839–847 · doi:10.1016/0021-9290(84)90142-8
[144] Vorp DA, Rajagopal KR, Smolinski PJ, Borovetz HS (1995) Identification of elastic properties of homogeneous, orthotropic vascular segments in distension. J Biomech 28(5):501–512 · doi:10.1016/0021-9290(94)00012-S
[145] Vossoughi J, Hedjazi Z, Borris FS (1993) Intimal residual stress and strain in large arteries. In: BED–ASME summer bioengineering conference proceedings, vol 24. ASME, New York, pp 434–437
[146] Wang C, Garcia M, Lu X, Lanir Y, Kassab GS (2006) Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am J Physiol Heart Circ Physiol 291(3):H1200–H1209 · doi:10.1152/ajpheart.01323.2005
[147] Watton PN, Hill NA, Heil M (2004) A mathematical model for the growth of the abdominal aortic aneurysm. Biomech Model Mechanobiol 3(2):98–113 · doi:10.1007/s10237-004-0052-9
[148] Westerhof N, Elzinga G, Sipkema P (1971) An artificial arterial system for pumping hearts. J Appl Physiol 31(5):776–781
[149] Wolinsky H, Glagov S (1964) Structural basis for the static mechanical properties of the aortic media. Circ Res 14:400–413
[150] Wolinsky H, Glagov S (1967) A lamellar unit of aortic medial structure and function in mammals. Circ Res 20:99–111
[151] Wu X, Levenston ME, Chaikof EL (2006) A constitutive model for protein-based materials. Biomaterials 2(30):5315–5325 · doi:10.1016/j.biomaterials.2006.06.003
[152] Wulandana R, Robertson AM (2005) An inelastic multi-mechanism constitutive equation for cerebral arterial tissue. Biomech Model Mechanobiol 4(4):235–248 · doi:10.1007/s10237-005-0004-z
[153] Yin FC, Chan CC, Judd RM (1996) Compressibility of perfused passive myocardium. Am J Physiol Heart Circ Physiol 271(5):H1864–H1870
[154] Younis HF, Kaazempur-Mofrad MR, Chan RC, Isasi AG, Hinton DP, Chau AH, Kim LA, Kamm RD (2004) Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech Model Mechanobiol 3(1):17–32 · doi:10.1007/s10237-004-0046-7
[155] Zeidler E (1990) Nonlinear functional analysis and its applications, vol II/B: nonlinear monotone operators. Springer, New York · Zbl 0684.47029
[156] Zeidler E (1997) Nonlinear functional analysis and its applications, vol IV: applications to mathematical physics. Springer, New York
[157] Zhang Y, Dunn ML, Drexler ES, McCowan CN, Slifka AJ, Ivy DD, Shandas R (2005) A microstructural hyperelastic model of pulmonary arteries under normo- and hypertensive conditions. Ann Biomed Eng 33(8):1042–1052 · doi:10.1007/s10439-005-5771-2
[158] Zienkiewicz OC, Taylor RL (2005) The finite element method, 6th edn. Elsevier Butterwoth–Heineman, Oxford
[159] Zulliger MA, Rachev A, Stergiopulos N (2004) A constitutive formulation of arterial mechanics including vascular smooth muscle tone. Am J Physiol Heart Circ Physiol 287(3):H1335–H1343 · doi:10.1152/ajpheart.00094.2004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.