×

The acoustic impedance of a laminar viscous jet through a thin circular aperture. (English) Zbl 1415.76561

Summary: The unsteady axisymmetric flow through a circular aperture in a thin plate subjected to harmonic forcing (for instance under the effect of an incident acoustic wave) is a classical problem first considered by M. S. Howe [Proc. R. Soc. Lond., Ser. A 366, 205–223 (1979; Zbl 0415.76060)], using an inviscid model. The purpose of this work is to reconsider this problem through a numerical resolution of the incompressible linearized Navier-Stokes equations (LNSE) in the laminar regime, corresponding to \(Re=[500,5000]\). We first compute a steady base flow which allows us to describe the vena contracta phenomenon in agreement with experiments. We then solve a linear problem allowing us to characterize both the spatial amplification of the perturbations and the impedance (or equivalently the Rayleigh conductivity), which is a key quantity to investigate the response of the jet to acoustic forcing. Since the linear perturbation is characterized by a strong spatial amplification, the numerical resolution requires the use of a complex mapping of the axial coordinate in order to enlarge the range of Reynolds number investigated. The results show that the impedances computed with \(Re>rsim 1500\) collapse onto a single curve, indicating that a large Reynolds number asymptotic regime is effectively reached. However, expressing the results in terms of conductivity leads to substantial deviation with respect to Howe’s model. Finally, we investigate the case of finite-amplitude perturbations through direct numerical simulations (DNS). We show that the impedance predicted by the linear approach remains valid for amplitudes up to order \(10^{-1}\), despite the fact that the spatial evolution of the perturbations in the jet is strongly nonlinear.

MSC:

76Q05 Hydro- and aero-acoustics
76D25 Wakes and jets

Citations:

Zbl 0415.76060

Software:

FreeFem++
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Abid, M., Brachet, M. & Huerre, P.1993Linear hydrodynamic instability of circular jets with thin shear layers. Eur. J. Mech. (B/Fluids)12, 683. · Zbl 0806.76025
[2] Barkley, D.2006Linear analysis of the cylinder wake mean flow. Europhys. Lett.75 (5), 750.10.1209/epl/i2006-10168-7 · doi:10.1209/epl/i2006-10168-7
[3] Batchelor, G. K. & Gill, A. E.1962Analysis of the stability of axisymmetric jets. J. Fluid Mech.14 (4), 529-551.10.1017/S0022112062001421S0022112062001421 · Zbl 0118.21102 · doi:10.1017/S0022112062001421
[4] Bellucci, V., Flohr, P., Paschereit, C. O. & Magni, F.2004On the use of Helmholtz resonators for damping acoustic pulsations in industrial gas turbines. Trans ASME J. Engng Gas Turbines Power126 (2), 271-275.10.1115/1.1473152 · doi:10.1115/1.1473152
[5] Bender, C. M. & Orszag, S. A.2013Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer Science & Business Media. · Zbl 0938.34001
[6] Boukir, K., Maday, Y., Métivet, B. & Razafindrakoto, E.1997A high-order characteristics/finite element method for the incompressible Navier-Stokes equations. Intl J. Numer. Meth. Fluids25 (12), 1421-1454.10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A · Zbl 0904.76040 · doi:10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A
[7] Charru, F.2011Hydrodynamic Instabilities, vol. 37. Cambridge University Press.10.1017/CBO9780511975172 · Zbl 1314.76002 · doi:10.1017/CBO9780511975172
[8] Colonius, T.2004Modeling artificial boundary conditions for compressible flow. Annu. Rev. Fluid Mech.36, 315-345.10.1146/annurev.fluid.36.050802.121930 · Zbl 1076.76040 · doi:10.1146/annurev.fluid.36.050802.121930
[9] Crighton, D. G.1985The kutta condition in unsteady flow. Annu. Rev. Fluid Mech.17 (1), 411-445.10.1146/annurev.fl.17.010185.002211 · Zbl 0596.76037 · doi:10.1146/annurev.fl.17.010185.002211
[10] Cummings, A. & Eversman, W.1983High amplitude acoustic transmission through duct terminations: theory. J. Sound Vib.91 (4), 503-518.10.1016/0022-460X(83)90829-5 · Zbl 0546.76099 · doi:10.1016/0022-460X(83)90829-5
[11] Drazin, P. G. & Reid, W. H.2004Hydrodynamic Stability. Cambridge University Press.10.1017/CBO9780511616938 · Zbl 1055.76001 · doi:10.1017/CBO9780511616938
[12] Eldredge, J. D., Bodony, D. J. & Shoeybi, M.2007 Numerical investigation of the acoustic behavior of a multi-perforated liner. In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). AIAA Paper 2007-3683.
[13] Fabre, D., Bonnefis, P., Charru, F., Russo, S., Citro, V., Giannetti, F. & Luchini, P.2014 Application of global stability approaches to whistling jets and wind instruments. In International Symposium on Musical Acoustics (ISMA), Le Mans, France, July, pp. 7-12. Acoustical Society of America.
[14] Fabre, D., Sabino, D. F., Citro, V., Bonnefis, P. & Giannetti, F.2018A practical review to linear and nonlinear approaches to flow instabilities. Appl. Mech. Rev. (in press).
[15] Fabre, D., Sipp, D. & Jacquin, L.2006Kelvin waves and the singular modes of the Lamb-Oseen vortex. J. Fluid Mech.551, 235-274.10.1017/S0022112005008463 · Zbl 1119.76020 · doi:10.1017/S0022112005008463
[16] Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P.2013The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech.716, 189-202.10.1017/jfm.2012.540S002211201200540X · Zbl 1284.76149 · doi:10.1017/jfm.2012.540
[17] Hecht, F.2012New development in freefem++. J. Numer. Math.20 (3-4), 251-265.10.1515/jnum-2012-0013 · Zbl 1266.68090 · doi:10.1515/jnum-2012-0013
[18] Henrywood, R. H. & Agarwal, A.2013The aeroacoustics of a steam kettle. Phys. Fluids25 (10), 107101.10.1063/1.4821782 · doi:10.1063/1.4821782
[19] Howe, M. S.1979On the theory of unsteady high Reynolds number flow through a circular aperture. Proc. R. Soc. Lond. A366, 205-223.10.1098/rspa.1979.0048 · Zbl 0415.76060 · doi:10.1098/rspa.1979.0048
[20] Hughes, I. J. & Dowling, A. P.1990The absorption of sound by perforated linings. J. Fluid Mech.218, 299-335.10.1017/S002211209000101XS002211209000101X · doi:10.1017/S002211209000101X
[21] Jeun, J., Nichols, J. W. & Jovanović, M. R.2016Input – output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids28 (4), 047101.10.1063/1.4946886 · doi:10.1063/1.4946886
[22] Jing, X. & Sun, X.2000Effect of plate thickness on impedance of perforated plates with bias flow. AIAA J.38 (9), 1573-1578.10.2514/2.1139 · doi:10.2514/2.1139
[23] Jing, X. & Sun, X.2002Sound-excited flow and acoustic nonlinearity at an orifice. Phys. Fluids14 (1), 268-276.10.1063/1.1423934 · Zbl 1184.76257 · doi:10.1063/1.1423934
[24] Kiya, M., Ido, Y. & Akiyama, H.1996Vortical structure in forced unsteady circular jet: simulation by 3D vortex method. In ESAIM: Proceedings, vol. 1, pp. 503-520. EDP Sciences. · Zbl 0875.76419
[25] Mann, A., Perot, F., Kim, M.-S. & Casalino, D.2013Characterization of acoustic liners absorption using a Lattice-Boltzmann method. In 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013-2271.
[26] Marquet, O., Sipp, D., Chomaz, J.-M. & Jacquin, L.2008Amplifier and resonator dynamics of a low-Reynolds-number recirculation bubble in a global framework. J. Fluid Mech.605, 429-443.10.1017/S0022112008000323S0022112008000323 · Zbl 1191.76053 · doi:10.1017/S0022112008000323
[27] Mendez, S. & Eldredge, J. D.2009Acoustic modeling of perforated plates with bias flow for large-eddy simulations. J. Comput. Phys.228 (13), 4757-4772.10.1016/j.jcp.2009.03.026 · Zbl 1166.76050 · doi:10.1016/j.jcp.2009.03.026
[28] Rayleigh, Lord1945The Theory of Sound. Dover. · JFM 25.1604.01
[29] Rupp, J., Carrotte, J. & Macquisten, M.2012The use of perforated damping liners in aero gas turbine combustion systems. Trans ASME J. Engng Gas Turbines Power134 (7), 071502.10.1115/1.4005972 · doi:10.1115/1.4005972
[30] Sasaki, K., Piantanida, S., Cavalieri, A. V. G. & Jordan, P.2017Real-time modelling of wavepackets in turbulent jets. J. Fluid Mech.821, 458-481.10.1017/jfm.2017.201 · Zbl 1383.76301 · doi:10.1017/jfm.2017.201
[31] Scarpato, A.2014 Linear and nonlinear analysis of the acoustic response of perforated plates traversed by a bias flow. PhD thesis, École Centrale Paris.
[32] Scarpato, A., Ducruix, S. & Schuller, T.2011 A LES based sound absorption analysis of high-amplitude waves through an orifice with bias flow. In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, pp. 613-622. American Society of Mechanical Engineers.
[33] Scarpato, A., Tran, N., Ducruix, S. & Schuller, T.2012Modeling the damping properties of perforated screens traversed by a bias flow and backed by a cavity at low strouhal number. J. Sound Vib.331 (2), 276-290.10.1016/j.jsv.2011.09.005 · doi:10.1016/j.jsv.2011.09.005
[34] Schmidt, O. T., Towne, A., Colonius, T., Cavalieri, A. V. G., Jordan, P. & Brès, G. A.2017Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech.825, 1153-1181.10.1017/jfm.2017.407S0022112017004074 · Zbl 1374.76074 · doi:10.1017/jfm.2017.407
[35] Schmidt, O. T., Towne, A., Rigas, G., Colonius, T. & Brès, G. A.2018Spectral analysis of jet turbulence. J. Fluid Mech.855, 953-982.10.1017/jfm.2018.675S0022112018006754 · Zbl 1415.76293 · doi:10.1017/jfm.2018.675
[36] Semeraro, O., Lesshafft, L., Jaunet, V. & Jordan, P.2016Modeling of coherent structures in a turbulent jet as global linear instability wavepackets: theory and experiment. Intl J. Heat Fluid Flow62, 24-32.10.1016/j.ijheatfluidflow.2016.10.010 · doi:10.1016/j.ijheatfluidflow.2016.10.010
[37] Shaabani-Ardali, L., Sipp, D. & Lesshafft, L.2017Time-delayed feedback technique for suppressing instabilities in time-periodic flow. Phys. Rev. Fluids2 (11), 113904.10.1103/PhysRevFluids.2.113904 · Zbl 1460.76082 · doi:10.1103/PhysRevFluids.2.113904
[38] Sipp, D. & Lebedev, A.2007Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech.593, 333-358.10.1017/S0022112007008907S0022112007008907 · Zbl 1172.76318 · doi:10.1017/S0022112007008907
[39] Smith, D. & Walker, W. J.1923Orifice flow. Proc. Inst. Mech. Engrs104 (1), 23-36.10.1243/PIME_PROC_1923_104_007_02 · doi:10.1243/PIME_PROC_1923_104_007_02
[40] Su, J., Rupp, J., Garmory, A. & Carrotte, J. F.2015Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices. J. Sound Vib.352, 174-191.10.1016/j.jsv.2015.05.009 · doi:10.1016/j.jsv.2015.05.009
[41] Tam, C. K. W., Ju, H., Jones, M. G., Watson, W. R. & Parrott, T. L.2005A computational and experimental study of slit resonators. J. Sound Vib.284 (3-5), 947-984.10.1016/j.jsv.2004.07.013 · Zbl 1237.76133 · doi:10.1016/j.jsv.2004.07.013
[42] Tam, W., Christopher, K. & Kurbatskii, K. A.2000Microfluid dynamics and acoustics of resonant liners. AIAA J.38 (8), 1331-1339.10.2514/3.14554 · doi:10.2514/3.14554
[43] Yang, D. & Morgans, A. S.2016A semi-analytical model for the acoustic impedance of finite length circular holes with mean flow. J. Sound Vib.384, 294-311.10.1016/j.jsv.2016.08.006 · doi:10.1016/j.jsv.2016.08.006
[44] Yang, D. & Morgans, A. S.2017The acoustics of short circular holes opening to confined and unconfined spaces. J. Sound Vib.393, 41-61.10.1016/j.jsv.2016.12.027 · doi:10.1016/j.jsv.2016.12.027
[45] Zhang, Q. & Bodony, D. J.2016Numerical investigation of a honeycomb liner grazed by laminar and turbulent boundary layers. J. Fluid Mech.792, 936-980.10.1017/jfm.2016.79S0022112016000793 · Zbl 1381.76328 · doi:10.1017/jfm.2016.79
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.