×

Analytic solution of nonlinear singularly perturbed initial value problems through iteration. (English) Zbl 1417.34116

Summary: This paper is concerned with singularly perturbed initial value problems for systems of ordinary differential equations. Here our emphasis will be on nonlinear phenomena and properties, particularly those with physical relevance. Since very few nonlinear systems can be solved explicitly, one must typically rely on a numerical scheme to accurately approximate the solution. However, numerical schemes do not always give accurate results, and we discuss the class of stiff differential equations, which present a more serious challenge to numerical analysts. In this paper, we derive in closed from, analytic solution of stiff nonlinear initial value problems, through iteration. The obtained sequence of iterates is based on the use of Lagrange multipliers. Moreover, the illustrative examples shows the efficiency of the method.

MSC:

34D15 Singular perturbations of ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benzinger W., Becker A., Httinger K.J.: Chemistry and kinetics of chemical vapour deposition of pyrocarbon: I. Fundamentals of kinetics and chemical reaction engineering. Carbon 34, 957–966 (1996) · doi:10.1016/0008-6223(96)00010-3
[2] Danish M., Sharma R.K., Ali S.: Gas absorption with first order chemical reaction in a laminar falling film over a reacting solid wall. Appl. Math. Model. 32, 901–929 (2008) · Zbl 1145.76467 · doi:10.1016/j.apm.2007.02.019
[3] Liu Y., Shen L.: A general rate law equation for biosorption. Biochem. Eng. J. 38, 390–394 (2008) · doi:10.1016/j.bej.2007.08.003
[4] Liu Y.: New insights into pseudo-second-order kinetic equation for adsorption. Colloids Surf. A 320, 275–278 (2008) · doi:10.1016/j.colsurfa.2008.01.032
[5] Rao C.V., Wolf D.M., Arkin A.P.: Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002) · doi:10.1038/nature01258
[6] Lu P.-C.: Introduction to the Mechanics of Viscous Fluids. Holt, Rinehart and Winston, New York (1973)
[7] Van Dyke M.: Perturbation Methods in Fluid Dynamics. Academic Press, New York (1964) · Zbl 0136.45001
[8] Bejan A.: Convection Heat Transfer. Wiley, New York (1984) · Zbl 0599.76097
[9] Knowles J.K., Messick R.E.: On a class of singular perturbation problems. J. Math. Anal. Appl. 9, 42–58 (1964) · Zbl 0138.35802 · doi:10.1016/0022-247X(64)90005-8
[10] Gold R.R.: Magnetohydrodynamic pipe flow. Part I. J. Fluid Mech. 13, 505–512 (1962) · Zbl 0117.43301 · doi:10.1017/S0022112062000889
[11] Kaushik A.: Singular perturbation analysis of bistable differential equation arising in the nerve pulse propagation. Nonlinear Anal. 09(5), 2106–2127 (2008) · Zbl 1156.35400 · doi:10.1016/j.nonrwa.2007.06.014
[12] Kaushik A.: Nonstandard perturbation approximation and traveling wave solutions of non-linear reaction diffusion equations. Numer. Methods Partial Differ. Equ. 24(1), 217–238 (2008) · Zbl 1133.65064 · doi:10.1002/num.20244
[13] Kaushik A., Sharma M.D.: Numerical Analysis of a mathematical model for propagation of an electrical pulse in a neuron. Numer. Methods Partial Differ. Equ. 27, 1–18 (2008) · Zbl 1152.92005
[14] Mortan K.W.: Numerical Solution of Convection Diffusion Problems. Chapman & Hall, London (1996)
[15] Havle O., Dolejsí V., Feistauer M.: Discontinuous Galerkin method for nonlinear convection diffusion problems with mixed Dirichlet-Neumann boundary conditions. Appl. Math. 55(5), 353–372 (2010) · Zbl 1224.65219 · doi:10.1007/s10492-010-0012-x
[16] E. ORiordan, J. Quinn. Parameter uniform numerical methods for some linear and nonlinear singularly perturbed convection diffusion boundary turning point problems. BIT Numer. Math. (2010). doi: 10.1007/s10543-010-0290-4
[17] Franz S., Matthies G.: Local projection stabilisation on S-type meshes for convection diffusion problems with characteristic layers. Computing 87, 135–167 (2010) · Zbl 1203.65226 · doi:10.1007/s00607-010-0079-y
[18] S. Franz. SDFEM with non-standard higher order finite elements for a convection diffusion problem with characteristic boundary layers. BIT Numer. Math. (2011). doi: 10.1007/s10543-010-0307-z · Zbl 1230.65116
[19] Kaushik A., Sharma K.K., Sharma M.: A parameter uniform difference scheme for parabolic partial differential equation with a retarded argument. Appl. Math. Model. 34, 4232–4242 (2010) · Zbl 1201.65131 · doi:10.1016/j.apm.2010.04.020
[20] Kaushik A., Kumar V., Sharma M.: Analysis of factorization method for elliptic differential equation. Comput. Math. Model. 22(1), 98–110 (2011) · Zbl 1253.65185 · doi:10.1007/s10598-011-9092-z
[21] Ohlberger M.: A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection diffusion equations. Numer. Math. 87, 737–761 (2001) · Zbl 0973.65076 · doi:10.1007/PL00005431
[22] A. Kaushik, M. Sharma. Convergence analysis of weighted difference approximations on piecewise uniform grids to a singularly perturbed functional differential equations. J. Optim. Theory Appl. doi: 10.1007/s10957-011-9965-5 · Zbl 1275.49046
[23] He J.-H.: Variational iteration method-A kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34(4), 699–708 (1999) · Zbl 1342.34005 · doi:10.1016/S0020-7462(98)00048-1
[24] Inokuti M., Sekine H., Mura T.: General use of the Lagrange multiplier in nonlinear mathematical physics. In: Nemat-Nasser, S. (eds) Variational Methods in the Mechanics of Solids, pp. 156–162. Pergamon Press, New York (1978)
[25] Ramos J.L.: On the variational iteration method and other iterative techniques for nonlinear differential equations. Appl. Math. Comput. 199, 39–69 (2008) · Zbl 1142.65082 · doi:10.1016/j.amc.2007.09.024
[26] He J.-H.: Variational iteration method–some recent results and new interpretations. J. Comput. Appl. Math. 207(1), 3–17 (2007) · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[27] He J.-H., Wu X.-H.: Variational iteration method: new development and applications. Comput. Math. Appl. 54(7–8), 881–894 (2007) · Zbl 1141.65372 · doi:10.1016/j.camwa.2006.12.083
[28] He J.-H., Wu G., Austin F.: The variational iteration method which should be followed. Nonlinear Sci. Lett. A 1(1), 1–30 (2010)
[29] Herisanu N., Marinca Vasile: A modified variational iteration method for strongly nonlinear problems. Nonlinear Sci. Lett. A 1(2), 183–192 (2010) · Zbl 1267.65101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.