×

Approximate solution to Fredholm integral equations using linear regression and applications to heat and mass transfer. (English) Zbl 1352.65653

Summary: In this work we develop improved asymptotic solutions to one-dimensional Fredholm integral equations of the first kind using linear regression. For the cases under consideration the unknown function is the flux distribution along a strip, and the integral equation depends on a parameter or a number of parameters, i.e. the Péclet number, the Biot number, the dimensionless length scales etc. It is assumed that asymptotic solutions, with respect to the parameters, are available. We show that the asymptotic solutions can be improved and extended by relaxing the coefficients associated with them and applying regression analysis to yield best-fit coefficients. The asymptotic solutions may even be combined to obtain a matched asymptotic expansion. Explicit expressions for the coefficients, which can depend on a number of parameters, are obtained using regression analysis, i.e. by creating a variational principle for the Fredholm Integral Equation and employing the least squares method. The resulting expression, although it provides an approximate solution to the flux distribution, it is explicit and estimates accurately the overall transport rate.

MSC:

65R20 Numerical methods for integral equations
45B05 Fredholm integral equations
80M25 Other numerical methods (thermodynamics) (MSC2010)
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Incropera, F. P.; DeWitt, D. P., Fundamentals of heat and mass transfer (1990), John Wiley and Sons
[2] Brebbia, C. A., Boundary elements: an introductory course (1992), Computational Mechanics · Zbl 0780.73002
[3] Carslaw, H. S.; Jaeger, J. C., Conduction of heat in solids (1959), Clarendon Press · Zbl 0972.80500
[4] Porter, D.; Stirling, D. S.G., Integral equations: a practical treatment, from spectral theory to applications (1990), Cambridge University Press · Zbl 0714.45001
[5] Ackerberg, R. C.; Patel, R. D.; Gupta, S. K., The heat/mass transfer to a finite strip at small Péclet numbers, J Fluid Mech, 86, 49 (1978) · Zbl 0382.76075
[6] Stone, H. A., Heat/mass transfer from surface films to shear flows at arbitrary Peclet numbers, Phys Fluids A, 1, 1112 (1989)
[7] Springer, S. G.; Pedley, T. J., The solution of heat transfer problems by the Wiener-Hopf technique. I. Leading edge of a hot film, Proc R Soc London A, 333, 347 (1973)
[8] Springer, S. G., The solution of heat transfer problems by the Wiener-Hopf technique. II. Trailing edge of a hot film, Proc R Soc London A, 337, 395 (1974)
[9] Fyrillas, M. M., Advection-dispersion mass transport associated with a non-aqueous-phase liquid pool, J Fluid Mech, 413, 49 (2000) · Zbl 0955.76087
[10] Fyrillas, M. M., Heat conduction in a solid slab embedded with a pipe of general cross-section: shape factor and shape optimization, Int J Eng Sci, 46, 907 (2008) · Zbl 1213.74251
[11] Fyrillas, M. M., Shape factor and shape optimization for a periodic array of isothermal pipes, Int J Heat Mass Transfer, 53, 982 (2010) · Zbl 1183.80027
[12] Fyrillas, M. M.; Stone, H. A., Critical insulation thickness of a slab embedded with a periodic array of isothermal strips, Int J Heat Mass Transfer, 54, 180 (2011) · Zbl 1205.80020
[13] Rajendran, L., Two-point Padé approximation of mass transfer rate at microdisc in a channel flow for all Péclet numbers, Electochim Acta, 51, 5407 (2006)
[14] Choi, J.; Margetis, D.; Squires, T. M.; Bazant, M. Z., Steady advection-diffusion around finite absorbers in two-dimensional flows, J Fluid Mech, 536, 155 (2005) · Zbl 1122.76083
[15] Homentcovschi, D.; Jude, L., Potential due to some arbitrary charged strips between parallel earthed planes, Int J Eng Sci, 22, 775 (1984) · Zbl 0558.73008
[16] De Mey, G., Temperature distribution in floor heating systems, Int J Heat Mass Transfer, 23, 1289 (1980)
[17] Latta, G. E., The solution of a class of integral equations, Int J Ration Mech Anal, 5, 821 (1956) · Zbl 0070.32901
[18] Lundgren, T.; Chiang, D., Solution of a class of singular integral equations, Q Appl Math, 24, 303 (1967) · Zbl 0148.10704
[19] Terry Hollands, K. G., The simplified-Fredholm integral equation solver and its use in thermal radiation, ASME J Heat Transfer, 132, 1 (2010)
[20] Tikhonov, A. N.; Glasko, V. B., The approximate solution of Fredholm integral equations of the first kind, USSR Comput Math Math Phys, 55, 236 (1964) · Zbl 0149.11405
[21] Fyrillas, M. M.; Kontoghiorghes, E. J., Numerical calculation of mass transfer from elliptical pools in uniform flow using the boundary element method, Transp Porous Media, 55, 91 (2004)
[22] Demetriou, M. A.; Paskaleva, A.; Vayena, O.; Doumanidis, H., Scanning actuator guidance scheme in a 1-D thermal manufacturing process, IEEE Trans Control Syst Technol, 11, 5, 757-764 (2003)
[23] Hardjadinata, G.; Doumanidis, C., Rapid prototyping by laser foil bonding and curing: thermomechanical modeling and process optimization, J Manuf Process, 3, 2, 108-119 (2001)
[24] Ioannou, Y.; Fyrillas, M. M.; Polychronopoulou, K.; Doumanidis, C., Analytical model for geometrical characteristics control of laser sintered surfaces, Int J Nano-Manuf, 6, 300 (2010)
[25] Alaeddine, M.; Ranganathan, R.; Ando, T.; Doumanidis, C., Modeling the melting and dissolution stages during thermal processing of intermetallic coatings from layered precursors, Trans ASME J Manuf Sci Eng, 127, 148-156 (2005)
[26] Zeng, T.; Doumanidis, C.; Hebb, J.; Brown, D., Growth of ultrathin silicon dioxide films during rapid thermal oxidation, (Proceedings of the 9th international conference on RTP 2001 advanced thermal processing of semiconductors (2001)), 287-295
[27] Jogdand H, Gulsoy G, Ando T, Chen J, Doumanidis CC, Gu Z, et al. Fabrication and characterization of nanoscale heating sources (“nanoheaters”) for nanomanufacturing. In: NSTI Nanotechnology Conference, Boston, MA, June 1-5, 2008, p. 280.; Jogdand H, Gulsoy G, Ando T, Chen J, Doumanidis CC, Gu Z, et al. Fabrication and characterization of nanoscale heating sources (“nanoheaters”) for nanomanufacturing. In: NSTI Nanotechnology Conference, Boston, MA, June 1-5, 2008, p. 280.
[28] Cui, Q.; Jogland, H.; Chen, J.; Gus, Z., Structures and ignition properties of nanoheaters formed by bimetallic Al-Ni reactive nanostructures, Mater Res Soc Symp Proc, 1148 (2009)
[29] Alaeddine, M.; Doumanidis, C., Distributed parameter thermal system control and observation by Green-Galerkin methods, Int J Numer Methods Eng, 61, 1921-1937 (2004) · Zbl 1075.80004
[30] Liu, T.; Campbell, B. T.; Sullivan, J. P., Surface temperature of a hot film on a wall in shear flow, Int J Heat Mass Transfer, 37, 2809 (1994)
[31] Magnus, W.; Oberhettinger, F., Formulas and theorems for the functions of mathematical physics (1949), Chelsea Publishing Company: Chelsea Publishing Company New York · Zbl 0039.07202
[32] Lévêque, M. A., Transmission de chaleur par convection, Ann Mines, 13, 283 (1928)
[33] Chang, C. L.; Gunzburger, M. D., A subdomain-Galerkin/least squares method for first-order elliptic systems in the plane, SIAM J Numer Anal, 27, 1197 (1990) · Zbl 0717.65087
[34] Collatz, L., The numerical treatment of differential equations (1966), Springer-Verlag: Springer-Verlag New York, 184 and 220-221
[35] Hanke, M., On a least squares collocation method for linear differential-algebraic equations, Numer Math, 54, 79 (1988) · Zbl 0643.65042
[36] Zwillinger, D., Handbook of differential equations (1992), Academic Press Inc · Zbl 0741.34002
[37] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical recipes (1992), Cambridge University Press · Zbl 0778.65003
[38] Kreyszig, E., Advanced engineering mathematics (1993), John Wiley & Sons · Zbl 0803.00001
[39] Payvar, P., Analytical solution of a new mixed boundary-value problem in heat conduction, Q J Mech Appl Math, 32, 253 (1979) · Zbl 0418.35052
[40] Ranger, K. B., The solution of a new mixed boundary value problem by use of an integral transformation, Int J Eng Sci, 12, 853 (1974) · Zbl 0285.31005
[41] Sadhal, S. S., Explicit solutions to a class of mixed boundary value problems, Int J Eng Sci, 19, 1053 (1981) · Zbl 0454.73009
[42] Phillips, G. P., Heat and mass transfer from a film into steady shear flow, Q J Mech Appl Math, 43, 135 (1990) · Zbl 0701.76091
[43] Yuen, W. Y.D., Heat conduction in sliding solids, Int J Heat Mass Transfer, 31, 637 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.