×

On the determination of deformation from strain. (English) Zbl 1369.74005

Summary: The problem of finding a deformation corresponding to a given Cauchy-Green strain is approached with a procedure that employs the Gram decomposition of the deformation gradient. It is shown that the rotation occurring in that decomposition can be obtained by solving a system of partial differential equations in the group of rotations or in its Lie algebra. The equivalence between the integrability conditions of these two systems and those of the systems of equations arising in the usual procedures for determining a deformation from the strain is proved. Examples of application of the proposed procedure are given.

MSC:

74A05 Kinematics of deformation
35Q74 PDEs in connection with mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Faraut J (2008) Analysis on Lie groups. An introduction. Cambridge University Press, Cambridge · Zbl 1147.22001 · doi:10.1017/CBO9780511755170
[2] Ciarlet PG, Gratie L, Mandare C (2009) Intrinsic methods in elasticity: a mathematical survey. Discrete Continuous Dyn Syst 23:133-164 · Zbl 1156.74007 · doi:10.3934/dcds.2009.23.1i
[3] Manville O (1903) Sur la déformation finie d’un milieu continu. Mém Soc Sci Bordeaux 2:83-162 · JFM 34.0844.01
[4] Marcolongo R (1905) Le formule del Saint-Venant per le deformazioni finite. Rend Circ Mat Palermo 19:151-155 · JFM 36.0855.03 · doi:10.1007/BF03014008
[5] Cafiero D (1906) La deformazione finita di un corpo continuo. Atti Acc Peloritana 21:179-228 · JFM 37.0830.02
[6] Crudeli U (1914) Sopra le deformazioni finite. Le equazioni del De Saint-Venant. Rend Accad Lincei 20:306-308 · JFM 42.0868.02
[7] Burgatti P (1914) Sulle deformazioni finite dei corpi continui. Mem Accad Sci Bologna 1:237-244
[8] Signorini A (1930) Sulle deformazioni finite dei sistemi continui. Rend Accad Lincei 12:312-316 · JFM 56.0687.02
[9] Truesdell, C.; Toupin, R.; Flügge, S. (ed.), The classical field theories (1960), Berlin
[10] Riemann, B.; Riemann, B. (ed.), Commentatio mathematica, qua respondere tentatur quaestioni ab Ill \[^\text{ma}\] ma Academia Parisiensi propositae (1861), 370-399 (1876), Leipzig
[11] Spivak M (1999) Differential geometry. A comprehensive introduction, 3rd edn. Publish or Perish Inc., Houston · Zbl 1213.53001
[12] Christoffel EB (1869) Ueber die transformation der homogenen Differentialausdrücke zweiten Grades. Journal für die Reine und Angewandte Mathematik 70:46-70 · JFM 02.0128.03 · doi:10.1515/crll.1869.70.46
[13] Signorini A (1943) Trasformazioni termoelastiche finite. Mem Prima Ann Mat Pura Appl 22:33-143 · Zbl 0063.07023 · doi:10.1007/BF02418157
[14] Antman SS (1976) Ordinary differential equations of nonlinear elasticity I: foundations of the theories of non-linearly elastic rods and shells. Arch Ration Mech Anal 61:307-351 · Zbl 0354.73046
[15] Fraeijs de Veubeke B (1972) A new variational principle for finite elastic displacements. Int J Eng Sci 10:745-763 · Zbl 0245.73031 · doi:10.1016/0020-7225(72)90079-1
[16] Murakawa H, Atluri S (1978) Finite elasticity solution using hybrid finite elements based on complementary energy principle. J Appl Mech 45:539-547 · Zbl 0392.73038 · doi:10.1115/1.3424358
[17] Pietraszkiewicz W, Badur J (1983) Finite rotations in the description of continuum deformation. Int J Eng Sci 21:1097-1115 · Zbl 0521.73033 · doi:10.1016/0020-7225(83)90050-2
[18] Lembo M (2013) On the determination of the rotation from the stretch. Int J Solids Struct 50:1005-1012 · Zbl 1387.54014 · doi:10.1016/j.ijsolstr.2012.12.002
[19] Ciarlet PG, Gratie L, Iosifescu O, Mandare C, Vallée C (2006) Rotation fields and the fundamental theorem of Riemannian geometry in \[R^3\] R3. C R Acad Sci Paris Ser I 343:415-421 · Zbl 1107.53011 · doi:10.1016/j.crma.2006.08.007
[20] Ciarlet PG, Gratie L, Iosifescu O, Mandare C, Vallée C (2007) Another approach to the fundamental theorem of Riemannian geometry in \[R^3\] R3, by way of rotation fields. J Math Pures Appl 87:237-252 · Zbl 1114.53033 · doi:10.1016/j.matpur.2006.10.009
[21] Pietraszkiewicz, W.; Badur, J.; Brilla, J. (ed.), On non-classical forms of compatibility conditions in continuum mechanics, 197-227 (1983), London · Zbl 0615.73045
[22] Vallée C (1992) Compatibility equations for large deformations. Int J Eng Sci 30:1753-1757 · Zbl 0825.73217 · doi:10.1016/0020-7225(92)90093-V
[23] Hamdouni A (2000) Interprétation géométrique de la décomposition des équations de compatibilité en grandes déformations. C R Acad Sci Paris Ser IIb 328:709-712 · Zbl 1006.74005
[24] Duda FP, Martins LC (1995) Compatibility conditions for the Cauchy-Green strain fields: solutions for the plane case. J Elast 39:247-264 · Zbl 0874.73026 · doi:10.1007/BF00041840
[25] Vallée C, Fortuné D (1996) Compatibility equations in shell theory. Int J Eng Sci 34:495-499 · Zbl 0900.73423 · doi:10.1016/0020-7225(95)00127-1
[26] Hamdouni A, Elamri K, Vallée C, Millet O (1998) Intrinsic formulation of compatibility conditions in nonlinear shell theory. Int J Eng Sci 36:421-429 · Zbl 1210.74118 · doi:10.1016/S0020-7225(97)85301-3
[27] Pietraszkiewicz W, Vallée C (2007) A method of shell theory in determination of the surface from components of its two fundamental forms. Z Angew Math Mech 87:603-615 · Zbl 1130.53008 · doi:10.1002/zamm.200710340
[28] Ciarlet PG, Iosifescu O (2008) Justification of the Darboux-Vallée-Fortuné compatibility relation in the theory of surfaces. C R Acad Sci Paris Ser I 346:1197-1202 · Zbl 1153.53005 · doi:10.1016/j.crma.2008.09.002
[29] Pietraszkiewicz W, Szwabowicz ML, Vallée C (2008) Determination of the midsurface of a deformed shell from prescribed surface strains and bendings via the polar decomposition. Int J Non Linear Mech 43:579-587 · Zbl 1203.74098 · doi:10.1016/j.ijnonlinmec.2008.02.003
[30] Shabana AA (2010) Computational dynamics, 3rd edn. Wiley, Chichester · Zbl 1182.70002 · doi:10.1002/9780470686850
[31] Sugiyama H, Gerstmayr J, Shabana AA (2006) Deformation modes in finite element absolute nodal coordinate formulation. Sound Vib 298:1129-1149 · Zbl 1243.74188 · doi:10.1016/j.jsv.2006.06.037
[32] Mohamed A-NA, Shabana AA (2011) A nonlinear visco-elastic constitutive model for large rotation finite element formulations. Multibody Syst Dyn 26:57-79 · Zbl 1287.74041 · doi:10.1007/s11044-011-9244-0
[33] Srinivasa AR (2012) On the use of the upper triangular (or QR) decomposition for developing constitutive equations for Green-elastic materials. Int J Eng Sci 60:1-12 · Zbl 1423.74110 · doi:10.1016/j.ijengsci.2012.05.003
[34] Freed AD, Srinivasa AR (2015) Logaritmic strain and its material derivative for QR decomposition of the deformation gradient. Acta Mech 226:2645-2670 · Zbl 1325.74015 · doi:10.1007/s00707-015-1344-0
[35] Hoger A, Carlson DE (1984) Determination of the stretch and rotation in the polar decomposition of the deformation gradient. Q Appl Math 42:113-117 · Zbl 0551.73004 · doi:10.1090/qam/736511
[36] Franca LP (1989) An algorithm to compute the square root of a \[3 \times 33\]×3 positive definite matrix. Comput Math Appl. 18:459-466 · Zbl 0686.65019 · doi:10.1016/0898-1221(89)90240-X
[37] Martins LC, Podio-Guidugli P (1979) A variational approach to the polar decomposition theorem. Rend Accad Naz Lincei (Classe Sci Fis Mat Nat) 66:487-493 · Zbl 0474.73036
[38] Grioli G (1940) Una proprietà di minimo nella cinematica delle deformazioni finite. Boll Un Matem Ital 2:252-255 · JFM 66.1018.04
[39] Serre D (2010) Matrices, theory and applications, 2nd edn. Springer, New York · Zbl 1202.15003
[40] Lee JM (2002) Introduction to Smooth manifolds. Springer, New York · Zbl 1030.53001
[41] Hall BC (2004) Lie groups, Lie algebras, and representations. An elementary introduction, 2nd edn. Springer, New York
[42] Dustermaat JJ, Kolk JAC (2000) Lie groups. Springer, New York · Zbl 0955.22001 · doi:10.1007/978-3-642-56936-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.