×

Patterned surface charges coupled with thermal gradients may create giant augmentations of solute dispersion in electro-osmosis of viscoelastic fluids. (English) Zbl 1425.76306

Summary: Augmenting the dispersion of a solute species and fluidic mixing remains a challenging proposition in electrically actuated microfluidic devices, primarily due to an inherent plug-like nature of the velocity profile under uniform surface charge conditions. While a judicious patterning of surface charges may obviate some of the concerning challenges, the consequent improvement in solute dispersion may turn out to be marginal. Here, we show that by exploiting a unique coupling of patterned surface charges with intrinsically induced thermal gradients, it may be possible to realize giant augmentations in solute dispersion in electro-osmotic flows. This is effectively mediated by the phenomena of Joule heating and surface heat dissipation, so as to induce local variations in electrical properties. Combined with the rheological premises of a viscoelastic fluid that are typically reminiscent of common biofluids handled in lab-on-a-chip-based micro-devices, our results demonstrate that the consequent electro-hydrodynamic forcing may open up favourable windows for augmented hydrodynamic dispersion, which has not yet been unveiled.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76A10 Viscoelastic fluids
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Whitesides GM. (2006) The origins and the future of microfluidics. Nature 442, 368-373. (doi:10.1038/nature05058) · doi:10.1038/nature05058
[2] Stone HA, Stroock AD, Ajdari A. (2004) Engineering flows in small devices. Annu. Rev. Fluid Mech. 36, 381-411. (doi:10.1146/annurev.fluid.36.050802.122124) · Zbl 1076.76076 · doi:10.1146/annurev.fluid.36.050802.122124
[3] Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM. (2002) Chaotic mixer for microchannels. Science 295, 647-651. (doi:10.1126/science.1066238) · doi:10.1126/science.1066238
[4] Chang C-CC, Yang R-JJ. (2008) Chaotic mixing in a microchannel utilizing periodically switching electro-osmotic recirculating rolls. Phys. Rev. E 77, 1-10. (doi:10.1103/PhysRevE.77.056311) · doi:10.1103/PhysRevE.77.056311
[5] Sugioka H. (2010) Chaotic mixer using electro-osmosis at finite Péclet number. Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. 81, 1-9. (doi:10.1103/PhysRevE.81.036306) · doi:10.1103/PhysRevE.81.036306
[6] Zhang J, He G, Liu F. (2006) Electro-osmotic flow and mixing in heterogeneous microchannels. Phys. Rev. E 73, 56305. (doi:10.1103/PhysRevE.73.056305) · doi:10.1103/PhysRevE.73.056305
[7] Glasgow I, Batton J, Aubry N. (2004) Electroosmotic mixing in microchannels. Lab. Chip 4,558-562. (doi:10.1039/B408875A) · doi:10.1039/B408875A
[8] Anderson PD, Galaktionov OS, Peters GWM, van de Vosse FN, Meijer HEH. (2000) Mixing of non-Newtonian fluids in time-periodic cavity flows. J. Nonnewton. Fluid Mech. 93, 265-286. (doi:10.1016/S0377-0257(00)00120-8) · Zbl 0963.76007 · doi:10.1016/S0377-0257(00)00120-8
[9] Hunter RJ. (1981) Zeta potential in colloid science. London: Academic Press.
[10] Probstein RF. (1994) Physicochemical hydrodynamics: an introduction, 2nd edn. New York: Wiley.
[11] Karniadakis G, Beskok A, Aluru N. (2005) Microflows and nanoflows. Berlin, Germany: Springer. · Zbl 1115.76003
[12] Taylor G. (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. A 219, 186-203. (doi:10.1098/rspa.1953.0139) · doi:10.1098/rspa.1953.0139
[13] Taylor G. (1954) Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. A 225, 473-477. (doi:10.1098/rspa.1954.0216) · doi:10.1098/rspa.1954.0216
[14] Aris R. (1956) On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. A 235, 67-77. (doi:10.1098/rspa.1956.0065) · doi:10.1098/rspa.1956.0065
[15] Aris R. (1959) On the dispersion of a solute by diffusion, convection, and exchange between phases. Proc. R. Soc. A 252, 538-550. (doi:10.1098/rspa.1959.0171) · Zbl 0092.19404 · doi:10.1098/rspa.1959.0171
[16] Aris R. (1960) On the dispersion of a solute in pulsating flow through a tube. Proc. R. Soc. A Math. Phys. Eng. Sci. 259, 370-376. (doi:10.1098/rspa.1960.0231) · Zbl 0094.40201 · doi:10.1098/rspa.1960.0231
[17] Rana J, Murthy PVSN. (2016) Unsteady solute dispersion in non-Newtonian fluid flow in a tube with wall absorption. Proc. R. Soc. A 472, 20160294. (doi:10.1098/rspa.2016.0294) · Zbl 1371.76004 · doi:10.1098/rspa.2016.0294
[18] Rana J, Murthy PVSN. (2017) Unsteady solute dispersion in small blood vessels using a two-phase Casson model. Proc. R. Soc. A 473, 20170427. (doi:10.1098/rspa.2017.0427) · Zbl 1404.76309 · doi:10.1098/rspa.2017.0427
[19] Zholkovskij EK, Masliyah JH, Czarnecki J. (2003) Electroosmotic dispersion in microchannels with a thin double layer. Anal. Chem. 75, 901-909. (doi:10.1021/ac0203591) · doi:10.1021/ac0203591
[20] Zholkovskij EK, Masliyah JH. (2004) Hydrodynamic dispersion due to combined pressure-driven and electroosmotic flow through microchannels with a thin double layer. Anal. Chem. 76, 2708-2718. (doi:10.1021/ac0303160) · doi:10.1021/ac0303160
[21] Ajdari A, Bontoux N, Stone HA. (2006) Hydrodynamic dispersion in shallow microchannels: the effect of cross-sectional shape. Anal. Chem. 78, 387-392. (doi:10.1021/ac0508651) · doi:10.1021/ac0508651
[22] Dutta D. (2008) Electrokinetic transport of charged samples through rectangular channels with small zeta potentials. Anal. Chem. 80, 4723-4730. (doi:10.1021/ac7024927) · doi:10.1021/ac7024927
[23] Jansons KM. (2006) On Taylor dispersion in oscillatory channel flows. Proc. R. Soc. A 462, 3501-3509. (doi:10.1098/rspa.2006.1745) · Zbl 1149.76623 · doi:10.1098/rspa.2006.1745
[24] Ghosal S. (2002) Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. J. Fluid Mech. 459, 103-128. (doi:10.1017/S0022112002007899) · Zbl 1010.76024 · doi:10.1017/S0022112002007899
[25] Arcos JC, Méndez F, Bautista EG, Bautista O. (2018) Dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a microchannel with a slowly varying wall zeta potential. J. Fluid Mech. 839, 348-386. (doi:10.1017/jfm.2018.11) · Zbl 1419.76192 · doi:10.1017/jfm.2018.11
[26] Berli CLA, Olivares ML. (2008) Electrokinetic flow of non-Newtonian fluids in microchannels. J. Colloid Interface Sci. 320, 582-589. (doi:10.1016/j.jcis.2007.12.032) · doi:10.1016/j.jcis.2007.12.032
[27] Berli CLA. (2010) Electrokinetic energy conversion in microchannels using polymer solutions. J. Colloid Interface Sci. 349, 446-448. (doi:10.1016/j.jcis.2010.05.083) · doi:10.1016/j.jcis.2010.05.083
[28] Das S, Chakraborty S. (2006) Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal. Chim. Acta 559, 15-24. (doi:10.1016/j.aca.2005.11.046) · doi:10.1016/j.aca.2005.11.046
[29] Olivares ML, Vera-Candioti L, Berli CLA. (2009) The EOF of polymer solutions. Electrophoresis 30, 921-929. (doi:10.1002/elps.200800578) · doi:10.1002/elps.200800578
[30] Zhao C, Yang C. (2011) Electro-osmotic mobility of non-Newtonian fluids. Biomicrofluidics 5, 014110. (doi:10.1063/1.3571278) · doi:10.1063/1.3571278
[31] Zhao C, Yang C. (2013) Electrokinetics of non-Newtonian fluids: a review. Adv. Colloid Interface Sci. 201-202, 94-108. (doi:10.1016/j.cis.2013.09.001) · doi:10.1016/j.cis.2013.09.001
[32] Owens RG. (2006) A new microstructure-based constitutive model for human blood. J. Nonnewton. Fluid Mech. 140, 57-70. (doi:10.1016/j.jnnfm.2006.01.015) · Zbl 1143.76344 · doi:10.1016/j.jnnfm.2006.01.015
[33] Moyers-Gonzalez M, Owens RG, Fang J. (2008) A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow. J. Fluid Mech. 617, 327. (doi:10.1017/S002211200800428X) · Zbl 1155.76064 · doi:10.1017/S002211200800428X
[34] Vissink A, Waterman HA, Gravenmade EJ, Panders AK, Vermey A. (1984) Rheological properties of saliva substitutes containing mucin, carboxymethylcellulose or polyethylenoxide. J. Oral Pathol. Med. 13, 22-28. (doi:10.1111/j.1600-0714.1984.tb01397.x) · doi:10.1111/j.1600-0714.1984.tb01397.x
[35] Fam H, Bryant JT, Kontopoulou M. (2007) Rheological properties of synovial fluids. Biorheology 44, 59-74.
[36] Silva AF, Alves MA, Oliveira MSN. (2017) Rheological behaviour of vitreous humour. Rheol. Acta 56, 377-386. (doi:10.1007/s00397-017-0997-0) · doi:10.1007/s00397-017-0997-0
[37] Afonso AM, Alves MA, Pinho FT. (2009) Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. J. Nonnewton. Fluid Mech. 159, 50-63. (doi:10.1016/j.jnnfm.2009.01.006) · Zbl 1274.76085 · doi:10.1016/j.jnnfm.2009.01.006
[38] Ghosh U, Chakraborty S. (2015) Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements. Phys. Fluids 27, 062004. (doi:10.1063/1.4922585) · doi:10.1063/1.4922585
[39] Mukherjee S, Goswami P, Dhar J, Dasgupta S, Chakraborty S. (2017) Ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip. Phys. Fluids 29, 72002. (doi:10.1063/1.4990841) · doi:10.1063/1.4990841
[40] Ferrás LL, Afonso AM, Alves MA, Nóbrega JM, Pinho FT. (2016) Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: analytical and semi-analytical solutions. Phys. Fluids 28, 093102. (doi:10.1063/1.4962357) · doi:10.1063/1.4962357
[41] Mukherjee S, Das SS, Dhar J, Chakraborty S, DasGupta S. (2017) Electroosmosis of viscoelastic fluids: role of wall depletion layer. Langmuir 33, 12 046-12 055. (doi:10.1021/acs.langmuir.7b02895) · doi:10.1021/acs.langmuir.7b02895
[42] Dhar J, Jaggi P, Chakraborty S. (2016) Oscillatory regimes of capillary imbibition of viscoelastic fluids through concentric annulus. RSC Adv. 6, 60 117-60 125. (doi:10.1039/C6RA05002F) · doi:10.1039/C6RA05002F
[43] Haeberle S, Zengerle R. (2007) Microfluidic platforms for lab-on-a-chip applications. Lab. Chip 7, 1094-1110. (doi:10.1039/B706364B) · doi:10.1039/B706364B
[44] Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39, 1153. (doi:10.1039/B820557B) · doi:10.1039/B820557B
[45] Brust M, Schaefer C, Doerr R, Pan L, Garcia M, Arratia PE, Wagner C. (2013) Rheology of human blood plasma : viscoelastic versus newtonian behavior. Phys. Rev. Lett. 78305, 6-10. (doi:10.1103/PhysRevLett.110.078305) · doi:10.1103/PhysRevLett.110.078305
[46] Das T, Chakraborty S. (2013) Perspective: flicking with flow: can microfluidics revolutionize the cancer research? Biomicrofluidics 7, 11811. (doi:10.1063/1.4789750) · doi:10.1063/1.4789750
[47] Ohno K, Tachikawa K, Manz A. (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29, 4443-4453. (doi:10.1002/elps.200800121) · doi:10.1002/elps.200800121
[48] Becker H, Gärtner C. (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21, 12-26. (doi:10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7) · doi:10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7
[49] Ziaie B, Baldi A, Lei M, Gu Y, Siegel R. (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv. Drug Deliv. Rev. 56, 145-172. (doi:10.1016/j.addr.2003.09.001) · doi:10.1016/j.addr.2003.09.001
[50] Chakraborty R, Dey R, Chakraborty S. (2013) Thermal characteristics of electromagnetohydrodynamic flows in narrow channels with viscous dissipation and Joule heating under constant wall heat flux. Int. J. Heat Mass Transf. 67, 1151-1162. (doi:10.1016/j.ijheatmasstransfer.2013.08.099) · doi:10.1016/j.ijheatmasstransfer.2013.08.099
[51] Majumder S, Dhar J, Chakraborty S. (2015) Resolving anomalies in predicting electrokinetic energy conversion efficiencies of nanofluidic devices. Sci. Rep. 5, 14725. (doi:10.1038/srep14725) · doi:10.1038/srep14725
[52] Das S, Das T, Chakraborty S. (2006) Analytical solutions for the rate of DNA hybridization in a microchannel in the presence of pressure-driven and electroosmotic flows. Sens. Actuators B Chem. 114, 957-963. (doi:10.1016/j.snb.2005.08.012) · doi:10.1016/j.snb.2005.08.012
[53] Das S, Chakraborty S. (2011) Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. Phys. Rev. E 84, 12501. (doi:10.1103/PhysRevE.84.012501) · doi:10.1103/PhysRevE.84.012501
[54] Ajdari A. (1995) Electro-osmosis on inhomogeneously charged surfaces. Phys. Rev. Lett. 75,755-758. (doi:10.1103/PhysRevLett.75.755) · doi:10.1103/PhysRevLett.75.755
[55] Ajdari A. (1996) Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces. Phys. Rev. E 53, 4996-5005. (doi:10.1103/PhysRevE.53.4996) · doi:10.1103/PhysRevE.53.4996
[56] Mandal S, Ghosh U, Bandopadhyay A, Chakraborty S. (2015) Electro-osmosis of superimposed fluids in the presence of modulated charged surfaces in narrow confinements. J. Fluid Mech. 776, 390-429. (doi:10.1017/jfm.2015.333) · Zbl 1382.76292 · doi:10.1017/jfm.2015.333
[57] Ghosh U, Chakraborty S. (2012) Patterned-wettability-induced alteration of electro-osmosis over charge-modulated surfaces in narrow confinements. Phys. Rev. E 85, 1-13. (doi:10.1103/PhysRevE.85.046304) · doi:10.1103/PhysRevE.85.046304
[58] Ng WY, Goh S, Lam YC, Yang C, Rodríguez I. (2009) DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab. Chip 9, 802-809. (doi:10.1039/B813639D) · doi:10.1039/B813639D
[59] Craster RV, Matar OK. (2005) Electrically induced pattern formation in thin leaky dielectric films. Phys. Fluids 17, 032104. (doi:10.1063/1.1852459) · Zbl 1187.76107 · doi:10.1063/1.1852459
[60] González A, Ramos A, Green NG, Castellanos A, Morgan H. (2000) Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys. Rev. E 61, 4019-4028. (doi:10.1103/PhysRevE.61.4019) · doi:10.1103/PhysRevE.61.4019
[61] Chakraborty S. (2006) Augmentation of peristaltic microflows through electro-osmotic mechanisms. J. Phys. D: Appl. Phys. 39, 5356. (doi:10.1088/0022-3727/39/24/037) · doi:10.1088/0022-3727/39/24/037
[62] Chakraborty S, Srivastava AK. (2007) Generalized model for time periodic electroosmotic flows with overlapping electrical double layers. Langmuir 23, 12 421-12 428. (doi:10.1021/la702109c) · doi:10.1021/la702109c
[63] Chakraborty S, Ray S. (2008) Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels. Phys. Fluids 20, 083602. (doi:10.1063/1.2949306) · Zbl 1182.76135 · doi:10.1063/1.2949306
[64] Squires TM, Bazant MZ. (2004) Induced-charge electro-osmosis. J. Fluid Mech. 509, 217-252. (doi:10.1017/S0022112004009309) · Zbl 1093.76065 · doi:10.1017/S0022112004009309
[65] Garcia AL, Ista LK, Petsev DN, O’Brien MJ, Bisong P, Mammoli AA, Brueck SRJ, López GP. (2005) Electrokinetic molecular separation in nanoscale fluidic channels. Lab. Chip 5, 1271-1276. (doi:10.1039/B503914B) · doi:10.1039/B503914B
[66] Ghosal S. (2004) Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis. Electrophoresis 25, 214-228. (doi:10.1002/elps.200305745) · doi:10.1002/elps.200305745
[67] Bandopadhyay A, Chakraborty S. (2012) Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids. Appl. Phys. Lett. 101, 043905. (doi:10.1063/1.4739429) · doi:10.1063/1.4739429
[68] Nguyen T, Xie Y, de Vreede LJ, van den Berg A, Eijkel JCT. (2013) Highly enhanced energy conversion from the streaming current by polymer addition. Lab. Chip 13, 3210. (doi:10.1039/C3LC41232F) · doi:10.1039/C3LC41232F
[69] Chen CH, Lin H, Lele SK, Santiago JG. (2005) Convective and absolute electrokinetic instability with conductivity gradients. J. Fluid Mech. 524, 263-303. (doi:10.1017/S0022112004002381) · Zbl 1065.76545 · doi:10.1017/S0022112004002381
[70] Melcher JR. (1967) Traveling-wave bulk electroconvection induced across a temperature gradient. Phys. Fluids 10, 1178. (doi:10.1063/1.1762260) · doi:10.1063/1.1762260
[71] Ghonge T, Chakraborty J, Dey R, Chakraborty S. (2013) Electrohydrodynamics within the electrical double layer in the presence of finite temperature gradients. Phys. Rev. E 88, 053020. (doi:10.1103/PhysRevE.88.053020) · doi:10.1103/PhysRevE.88.053020
[72] Das S, Das T, Chakraborty S. (2006) Modeling of coupled momentum, heat and solute transport during DNA hybridization in a microchannel in the presence of electro-osmotic effects and axial pressure gradients. Microfluid. Nanofluidics 2, 37-49. (doi:10.1007/s10404-005-0052-9) · doi:10.1007/s10404-005-0052-9
[73] Goswami P, Chakraborty S. (2010) Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip. Langmuir 26, 581-590. (doi:10.1021/la901209a) · doi:10.1021/la901209a
[74] Dey R, Chakraborty D, Chakraborty S. (2010) Analytical solution for thermally fully developed combined electroosmotic and pressure-driven flows in narrow confinements with thick electrical double layers. J. Heat Transfer 133, 024503. (doi:10.1115/1.4002607) · doi:10.1115/1.4002607
[75] Ghosal S. (2003) The effect of wall interactions in capillary-zone electrophoresis. J. Fluid Mech. 491, 285-300. (doi:10.1017/S0022112003005330) · Zbl 1063.76667 · doi:10.1017/S0022112003005330
[76] Datta S, Ghosal S. (2008) Dispersion due to wall interactions in microfluidic separation systems. Phys. Fluids 20, 012103. (doi:10.1063/1.2828098) · Zbl 1182.76182 · doi:10.1063/1.2828098
[77] Datta S, Ghosal S. (2009) Characterizing dispersion in microfluidic channels. Lab. Chip 9, 2537-2550. (doi:10.1039/b822948c) · doi:10.1039/b822948c
[78] Paul S, Ng CO. (2012) Dispersion in electroosmotic flow generated by oscillatory electric field interacting with oscillatory wall potentials. Microfluid. Nanofluidics 12, 237-256. (doi:10.1007/s10404-011-0868-4) · doi:10.1007/s10404-011-0868-4
[79] Ng CO, Zhou Q. (2012) Dispersion due to electroosmotic flow in a circular microchannel with slowly varying wall potential and hydrodynamic slippage. Phys. Fluids 24, 112002. (doi:10.1063/1.4766598) · doi:10.1063/1.4766598
[80] Das S, Chakraborty S. (2010) Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements. Langmuir 26, 11 589-11 596. (doi:10.1021/la1009237) · doi:10.1021/la1009237
[81] Das S, Chakraborty S, Mitra SK. (2012) Redefining electrical double layer thickness in narrow confinements: effect of solvent polarization. Phys. Rev. E 85, 051508. (doi:10.1103/PhysRevE.85.051508) · doi:10.1103/PhysRevE.85.051508
[82] Bandopadhyay A, Chakraborty S. (2011) Steric-effect induced alterations in streaming potential and energy transfer efficiency of non-Newtonian fluids in narrow confinements. Langmuir 27, 12 243-12 252. (doi:10.1021/la202273e) · doi:10.1021/la202273e
[83] Sánchez S, Méndez F, Martínez-Suástegui L, Bautista O. (2012) Asymptotic analysis for the conjugate heat transfer problem in an electro-osmotic flow with temperature-dependent properties in a capillary. Int. J. Heat Mass Transf. 55, 8163-8171. (doi:10.1016/j.ijheatmasstransfer.2012.08.027) · doi:10.1016/j.ijheatmasstransfer.2012.08.027
[84] Bazant MZ, Thornton K, Ajdari A. (2004) Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70, 21506. (doi:10.1103/PhysRevE.70.021506) · doi:10.1103/PhysRevE.70.021506
[85] Thien NP, Tanner RI. (1977) A new constitutive equation derived from network theory. J. Nonnewton. Fluid Mech. 2, 353-365. (doi:10.1016/0377-0257(77)80021-9) · Zbl 0361.76011 · doi:10.1016/0377-0257(77)80021-9
[86] Bautista O, Sánchez S, Arcos JC, Méndez F. (2013) Lubrication theory for electro-osmotic flow in a slit microchannel with the Phan-Thien and Tanner model. J. Fluid Mech. 722, 496-532. (doi:10.1017/jfm.2013.107) · Zbl 1287.76034 · doi:10.1017/jfm.2013.107
[87] Venditti R, Xuan X, Li D. (2006) Experimental characterization of the temperature dependence of zeta potential and its effect on electroosmotic flow velocity in microchannels. Microfluid. Nanofluidics 2, 493-499. (doi:10.1007/s10404-006-0100-0) · doi:10.1007/s10404-006-0100-0
[88] Xuan X, Sinton D, Li D. (2004) Thermal end effects on electroosmotic flow in a capillary. Int. J. Heat Mass Transf. 47, 3145-3157. (doi:10.1016/j.ijheatmasstransfer.2004.02.023) · Zbl 1079.76683 · doi:10.1016/j.ijheatmasstransfer.2004.02.023
[89] Huang KD, Yang RJ. (2006) Numerical modeling of the Joule heating effect on electrokinetic flow focusing. Electrophoresis 27, 1957-1966. (doi:10.1002/elps.200500721) · doi:10.1002/elps.200500721
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.