×

Non-crystallographic symmetry in packing spaces. (English) Zbl 1351.52024

Summary: In the following, isomorphism of an arbitrary finite group of symmetry, non-crystallographic symmetry (quaternion groups, Pauli matrices groups, and other abstract subgroups), in addition to the permutation group, are considered. Application of finite groups of permutations to the packing space determines space tilings by policubes (polyominoes) and forms a structure. Such an approach establishes the computer design of abstract groups of symmetry. Every finite discrete model of the real structure is an element of symmetry groups, including non-crystallographic ones. The set packing spaces of the same order \(N\) characterizes discrete deformation transformations of the structure.

MSC:

52C22 Tilings in \(n\) dimensions (aspects of discrete geometry)
52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)
20B99 Permutation groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRev.46.372 · Zbl 0010.09306 · doi:10.1103/PhysRev.46.372
[2] Buerger, Vector Space and Its Application in Crystal Structure Investigation pp 384– (1959)
[3] Rau, Calculation pattersonovskiy cyclotomic sets, Sov. Phys. Dokl. 25 pp 960– (1980)
[4] Rau, The isovector structures of pseudosimmetric crystals, Dokl. Akad. Nauk SSSR 249 pp 611– (1979) · Zbl 0442.20036
[5] Hall, Combinatorial Theory pp 424– (1967)
[7] Maleev, The method of discrete modeling of packings in molecular crystals, Sov. Phys. Dokl. 35 pp 997– (1990)
[8] DOI: 10.1134/1.2049388 · doi:10.1134/1.2049388
[9] DOI: 10.1090/S0002-9947-1978-0496813-3 · doi:10.1090/S0002-9947-1978-0496813-3
[10] Klarner, The Mathematical Gardner pp 494– (1981) · Zbl 0454.00017
[11] DOI: 10.3390/sym3040828 · Zbl 1360.52018 · doi:10.3390/sym3040828
[12] DOI: 10.1134/1.171162 · doi:10.1134/1.171162
[13] DOI: 10.1134/1.1343145 · doi:10.1134/1.1343145
[14] DOI: 10.1134/1.1509385 · doi:10.1134/1.1509385
[15] DOI: 10.1134/1.1509384 · doi:10.1134/1.1509384
[16] DOI: 10.1134/S1063774506010020 · doi:10.1134/S1063774506010020
[17] DOI: 10.1098/rspa.1997.0126 · Zbl 1066.11505 · doi:10.1098/rspa.1997.0126
[18] Zhuravlev, Self-similar growth of periodic partitions and graphs, St. Petersb. Math. J. 13 pp 201– (2001)
[19] Zhuravlev, Growth of planar random graphs and packaging, Crystallogr. Rep. 47 pp 907– (2002) · doi:10.1134/1.1523512
[20] DOI: 10.1134/S0022476611040172 · doi:10.1134/S0022476611040172
[21] Maleev, n-Divensional packing spaces, Crystallogr. Rep. 40 pp 354– (1995) · Zbl 0839.52011
[22] Rau, Tiling a space with Dirichlet polyominoes, Crystallogr. Rep. 40 pp 154– (1995) · Zbl 0830.05019
[23] Maleev, Symmetry of the n-divensional packing spaces, Kristallografiya 43 pp 775– (1998)
[24] DOI: 10.1134/S1063774510050019 · doi:10.1134/S1063774510050019
[25] DOI: 10.1134/1.1306568 · doi:10.1134/1.1306568
[26] DOI: 10.1134/S1063774509070037 · doi:10.1134/S1063774509070037
[27] DOI: 10.1007/BF02903447 · doi:10.1007/BF02903447
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.