×

zbMATH — the first resource for mathematics

The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. (English) Zbl 1402.81011

MSC:
81-04 Software, source code, etc. for problems pertaining to quantum theory
81-08 Computational methods for problems pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gross, DJ; Wilczek, F., Ultraviolet behavior of non-abelian gauge theories, Phys. Rev. Lett., 30, 1343, (1973)
[2] Politzer, HD, Reliable perturbative results for strong interactions?, Phys. Rev. Lett., 30, 1346, (1973)
[3] Appelquist, T.; Georgi, H., E\^{}{+}e\^{}{−} annihilation in gauge theories of strong interactions, Phys. Rev., D 8, 4000, (1973)
[4] Sterman, GF; Weinberg, S., Jets from quantum chromodynamics, Phys. Rev. Lett., 39, 1436, (1977)
[5] Buras, AJ; Floratos, EG; Ross, DA; Sachrajda, CT, Asymptotic freedom beyond the leading order, Nucl. Phys., B 131, 308, (1977)
[6] Bardeen, WA; Buras, AJ; Duke, DW; Muta, T., Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev., D 18, 3998, (1978)
[7] G. Altarelli, R.K. Ellis and G. Martinelli, Leptoproduction and Drell-Yan processes beyond the leading approximation in chromodynamics, Nucl. Phys.B 143 (1978) 521 [Erratum ibid.B 146 (1978) 544] [INSPIRE].
[8] Celmaster, W.; Gonsalves, RJ, Fourth order QCD contributions to the e\^{}{+}e\^{}{−} annihilation cross-section, Phys. Rev., D 21, 3112, (1980)
[9] Ellis, RK; Ross, DA; Terrano, AE, The perturbative calculation of jet structure in e\^{}{+} e\^{}{−} annihilation, Nucl. Phys., B 178, 421, (1981)
[10] Frixione, S.; Kunszt, Z.; Signer, A., Three jet cross-sections to next-to-leading order, Nucl. Phys., B 467, 399, (1996)
[11] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
[12] Frixione, S., A general approach to jet cross-sections in QCD, Nucl. Phys., B 507, 295, (1997)
[13] Kosower, DA, Antenna factorization of gauge theory amplitudes, Phys. Rev., D 57, 5410, (1998)
[14] Campbell, JM; Cullen, MA; Glover, EWN, Four jet event shapes in electron-positron annihilation, Eur. Phys. J., C 9, 245, (1999)
[15] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys., B 425, 217, (1994) · Zbl 1049.81644
[16] Aguila, F.; Pittau, R., Recursive numerical calculus of one-loop tensor integrals, JHEP, 07, 017, (2004)
[17] Bern, Z.; Dixon, LJ; Kosower, DA, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev., D 73, 065013, (2006)
[18] Ossola, G.; Papadopoulos, CG; Pittau, R., Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys., B 763, 147, (2007) · Zbl 1116.81067
[19] Anastasiou, C.; Britto, R.; Feng, B.; Kunszt, Z.; Mastrolia, P., D-dimensional unitarity cut method, Phys. Lett., B 645, 213, (2007)
[20] Anastasiou, C.; Britto, R.; Feng, B.; Kunszt, Z.; Mastrolia, P., Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP, 03, 111, (2007)
[21] Ellis, RK; Giele, WT; Kunszt, Z., A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP, 03, 003, (2008)
[22] Ellis, RK; Giele, WT; Kunszt, Z.; Melnikov, K., Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys., B 822, 270, (2009) · Zbl 1196.81234
[23] Giele, WT; Kunszt, Z.; Melnikov, K., Full one-loop amplitudes from tree amplitudes, JHEP, 04, 049, (2008) · Zbl 1246.81170
[24] Cascioli, F.; Maierhofer, P.; Pozzorini, S., Scattering amplitudes with open loops, Phys. Rev. Lett., 108, 111601, (2012)
[25] P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP06 (2012) 095 [Erratum ibid.11 (2012) 128] [arXiv:1203.0291] [INSPIRE]. · Zbl 1331.81218
[26] Frixione, S.; Webber, BR, Matching NLO QCD computations and parton shower simulations, JHEP, 06, 029, (2002)
[27] Nason, P., A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP, 11, 040, (2004)
[28] Dobbs, M., Incorporating next-to-leading order matrix elements for hadronic diboson production in showering event generators, Phys. Rev., D 64, 034016, (2001)
[29] Chen, Y-J; Collins, J.; Zu, X-M, NLO corrections in MC event generator for angular distribution of Drell-Yan lepton pair production, JHEP, 04, 041, (2002)
[30] Kurihara, Y.; etal., QCD event generators with next-to-leading order matrix elements and parton showers, Nucl. Phys., B 654, 301, (2003) · Zbl 1010.81511
[31] Nagy, Z.; Soper, DE, Matching parton showers to NLO computations, JHEP, 10, 024, (2005)
[32] Bauer, CW; Schwartz, MD, Event generation from effective field theory, Phys. Rev., D 76, 074004, (2007)
[33] Nagy, Z.; Soper, DE, Parton showers with quantum interference, JHEP, 09, 114, (2007)
[34] Giele, WT; Kosower, DA; Skands, PZ, A simple shower and matching algorithm, Phys. Rev., D 78, 014026, (2008)
[35] Bauer, CW; Tackmann, FJ; Thaler, J., Geneva. I. A new framework for event generation, JHEP, 12, 010, (2008)
[36] Hoeche, S.; Krauss, F.; Schonherr, M.; Siegert, F., A critical appraisal of NLO + PS matching methods, JHEP, 09, 049, (2012)
[37] Hamilton, K.; Nason, P.; Re, E.; Zanderighi, G., NNLOPS simulation of Higgs boson production, JHEP, 10, 222, (2013)
[38] Alwall, J.; Herquet, M.; Maltoni, F.; Mattelaer, O.; Stelzer, T., Madgraph 5: going beyond, JHEP, 06, 128, (2011) · Zbl 1298.81362
[39] Stelzer, T.; Long, WF, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun., 81, 357, (1994)
[40] Caravaglios, F.; Moretti, M., An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett., B 358, 332, (1995)
[41] Yuasa, F.; etal., Automatic computation of cross-sections in HEP: status of GRACE system, Prog. Theor. Phys. Suppl., 138, 18, (2000)
[42] Kanaki, A.; Papadopoulos, CG, HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Commun., 132, 306, (2000) · Zbl 1031.81507
[43] M. Moretti, T. Ohl and J. Reuter, \(O\)’Mega: an optimizing matrix element generator, hep-ph/0102195 [INSPIRE].
[44] Krauss, F.; Kuhn, R.; Soff, G., AMEGIC++ 1.0: a matrix element generator in C++, JHEP, 02, 044, (2002)
[45] Mangano, ML; Moretti, M.; Piccinini, F.; Pittau, R.; Polosa, AD, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP, 07, 001, (2003)
[46] Fujimoto, J.; etal., GRACE/SUSY automatic generation of tree amplitudes in the minimal supersymmetric standard model, Comput. Phys. Commun., 153, 106, (2003)
[47] CompHEP collaboration; Boos, E.; etal., Comphep 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Meth., A 534, 250, (2004)
[48] Tsuno, S.; Kaneko, T.; Kurihara, Y.; Odaka, S.; Kato, K., GR@PPA 2.7 event generator for \( pp/ p\overline{p} \) collisions, Comput. Phys. Commun., 175, 665, (2006)
[49] Cafarella, A.; Papadopoulos, CG; Worek, M., Helac-phegas: a generator for all parton level processes, Comput. Phys. Commun., 180, 1941, (2009)
[50] Kilian, W.; Ohl, T.; Reuter, J., WHIZARD: simulating multi-particle processes at LHC and ILC, Eur. Phys. J., C 71, 1742, (2011)
[51] Alwall, J.; etal., Madgraph/madevent v4: the new web generation, JHEP, 09, 028, (2007)
[52] Gleisberg, T.; Hoeche, S., Comix, a new matrix element generator, JHEP, 12, 039, (2008)
[53] Belyaev, A.; Christensen, ND; Pukhov, A., Calchep 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun., 184, 1729, (2013) · Zbl 1286.81009
[54] Hahn, T.; Pérez-Victoria, M., Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun., 118, 153, (1999)
[55] Hahn, T., Generating Feynman diagrams and amplitudes with feynarts 3, Comput. Phys. Commun., 140, 418, (2001) · Zbl 0994.81082
[56] Gleisberg, T.; Krauss, F., Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J., C 53, 501, (2008)
[57] Berger, CF; etal., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[58] Frederix, R.; Gehrmann, T.; Greiner, N., Automation of the dipole subtraction method in madgraph/madevent, JHEP, 09, 122, (2008)
[59] Giele, WT; Zanderighi, G., On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP, 06, 038, (2008)
[60] Czakon, M.; Papadopoulos, CG; Worek, M., Polarizing the dipoles, JHEP, 08, 085, (2009)
[61] Frederix, R.; Frixione, S.; Maltoni, F.; Stelzer, T., Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP, 10, 003, (2009)
[62] Hasegawa, K.; Moch, S.; Uwer, P., Autodipole: automated generation of dipole subtraction terms, Comput. Phys. Commun., 181, 1802, (2010) · Zbl 1219.81244
[63] Hoche, S.; Krauss, F.; Schonherr, M.; Siegert, F., Automating the POWHEG method in sherpa, JHEP, 04, 024, (2011)
[64] Alioli, S.; Nason, P.; Oleari, C.; Re, E., A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP, 06, 043, (2010) · Zbl 1290.81155
[65] Mastrolia, P.; Ossola, G.; Reiter, T.; Tramontano, F., Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP, 08, 080, (2010) · Zbl 1290.81151
[66] Frederix, R.; Gehrmann, T.; Greiner, N., Integrated dipoles with maddipole in the madgraph framework, JHEP, 06, 086, (2010) · Zbl 1288.81145
[67] Becker, S.; Reuschle, C.; Weinzierl, S., Numerical NLO QCD calculations, JHEP, 12, 013, (2010) · Zbl 1294.81267
[68] Hirschi, V.; etal., Automation of one-loop QCD corrections, JHEP, 05, 044, (2011) · Zbl 1296.81138
[69] Bevilacqua, G.; etal., Helac-nlo, Comput. Phys. Commun., 184, 986, (2013)
[70] Becker, S.; Goetz, D.; Reuschle, C.; Schwan, C.; Weinzierl, S., NLO results for five, six and seven jets in electron-positron annihilation, Phys. Rev. Lett., 108, 032005, (2012)
[71] Cullen, G.; etal., Automated one-loop calculations with gosam, Eur. Phys. J., C 72, 1889, (2012)
[72] Binoth, T.; etal., Automized squark-neutralino production to next-to-leading order, Phys. Rev., D 84, 075005, (2011)
[73] Agrawal, S.; Hahn, T.; Mirabella, E., Formcalc 7, J. Phys. Conf. Ser., 368, 012054, (2012)
[74] Bern, Z.; etal., Four-jet production at the large hadron collider at next-to-leading order in QCD, Phys. Rev. Lett., 109, 042001, (2012)
[75] Actis, S.; Denner, A.; Hofer, L.; Scharf, A.; Uccirati, S., Recursive generation of one-loop amplitudes in the standard model, JHEP, 04, 037, (2013)
[76] Badger, S.; Biedermann, B.; Uwer, P.; Yundin, V., Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun., 184, 1981, (2013)
[77] Goncalves-Netto, D.; Lopez-Val, D.; Mawatari, K.; Plehn, T.; Wigmore, I., Automated squark and gluino production to next-to-leading order, Phys. Rev., D 87, 014002, (2013)
[78] Badger, S.; Biedermann, B.; Uwer, P.; Yundin, V., Computation of multi-leg amplitudes with njet, J. Phys. Conf. Ser., 523, 012057, (2014)
[79] Bern, Z.; etal., The blackhat library for one-loop amplitudes, J. Phys. Conf. Ser., 523, 012051, (2014)
[80] G. Cullen et al., GoSam-2\(.\)0: a tool for automated one-loop calculations within the standard model and beyond, arXiv:1404.7096 [INSPIRE].
[81] Deurzen, H.; etal., Multi-leg one-loop massive amplitudes from integrand reduction via Laurent expansion, JHEP, 03, 115, (2014)
[82] T. Peraro, Ninja: automated integrand reduction via Laurent expansion for one-loop amplitudes, arXiv:1403.1229 [INSPIRE]. · Zbl 1360.81021
[83] E. Byckling and K. Kajantie, Particle kinematics, Wiley, U.S.A. (1971).
[84] Christensen, ND; Duhr, C., Feynrules — Feynman rules made easy, Comput. Phys. Commun., 180, 1614, (2009)
[85] Christensen, ND; etal., A comprehensive approach to new physics simulations, Eur. Phys. J., C 71, 1541, (2011)
[86] Christensen, ND; Duhr, C.; Fuks, B.; Reuter, J.; Speckner, C., Introducing an interface between WHIZARD and feynrules, Eur. Phys. J., C 72, 1990, (2012)
[87] Duhr, C.; Fuks, B., A superspace module for the feynrules package, Comput. Phys. Commun., 182, 2404, (2011) · Zbl 1262.81169
[88] Alloul, A.; Christensen, ND; Degrande, C.; Duhr, C.; Fuks, B., Feynrules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun., 185, 2250, (2014)
[89] Alloul, A.; D’Hondt, J.; Causmaecker, K.; Fuks, B.; Rausch de Traubenberg, M., Automated mass spectrum generation for new physics, Eur. Phys. J., C 73, 2325, (2013)
[90] C. Degrande, Automated computation of the R_{2}rational terms and ultraviolet counterterms by NLOCT: an illustration on the 2HDM, in preparation.
[91] H. Murayama, I. Watanabe and K. Hagiwara, HELAS: helicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11, Japan (1992) [INSPIRE].
[92] Aquino, P.; Link, W.; Maltoni, F.; Mattelaer, O.; Stelzer, T., ALOHA: automatic libraries of helicity amplitudes for Feynman diagram computations, Comput. Phys. Commun., 183, 2254, (2012)
[93] Degrande, C.; etal., UFO — the universal feynrules output, Comput. Phys. Commun., 183, 1201, (2012)
[94] Alwall, J.; etal., A standard format for LES houches event files, Comput. Phys. Commun., 176, 300, (2007)
[95] J.M. Butterworth et al., The tools and Monte Carlo working group summary report, arXiv:1003.1643 [INSPIRE].
[96] Argyres, EN; etal., Stable calculations for unstable particles: restoring gauge invariance, Phys. Lett., B 358, 339, (1995)
[97] Beenakker, W.; etal., The fermion loop scheme for finite width effects in e\^{}{+}e\^{}{−} annihilation into four fermions, Nucl. Phys., B 500, 255, (1997)
[98] Passarino, G., Unstable particles and nonconserved currents: a generalization of the fermion loop scheme, Nucl. Phys., B 574, 451, (2000)
[99] Beenakker, W.; Berends, FA; Chapovsky, AP, An effective Lagrangian approach for unstable particles, Nucl. Phys., B 573, 503, (2000)
[100] Beenakker, W.; Chapovsky, AP; Kanaki, A.; Papadopoulos, CG; Pittau, R., Towards an effective Lagrangian approach to fermion loop corrections, Nucl. Phys., B 667, 359, (2003)
[101] Beneke, M.; Chapovsky, AP; Signer, A.; Zanderighi, G., Effective theory approach to unstable particle production, Phys. Rev. Lett., 93, 011602, (2004)
[102] Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D., Predictions for all processes e+e− → 4 fermions + γ, Nucl. Phys., B 560, 33, (1999)
[103] A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e\^{}{+}\(e\)\^{}{−} → 4 fermion processes: technical details and further results, Nucl. Phys.B 724 (2005) 247 [Erratum ibid.B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
[104] Staub, F., SARAH 3.2: Dirac gauginos, UFO output and more, Comput. Phys. Commun., 184, 1792, (2013)
[105] Christensen, ND; etal., Simulating spin-\( \frac{3}{2} \) particles at colliders, Eur. Phys. J., C 73, 2580, (2013)
[106] J. Alwall et al., Computing decay rates for new physics theories with FeynRules and MadGraph5/aMC@NLO, arXiv:1402.1178 [INSPIRE].
[107] Berends, FA; Kleiss, R.; Causmaecker, P.; Gastmans, R.; Wu, TT, Single bremsstrahlung processes in gauge theories, Phys. Lett., B 103, 124, (1981)
[108] Causmaecker, P.; Gastmans, R.; Troost, W.; Wu, TT, Multiple bremsstrahlung in gauge theories at high-energies. 1. general formalism for quantum electrodynamics, Nucl. Phys., B 206, 53, (1982)
[109] Kleiss, R.; Stirling, WJ, Spinor techniques for calculating \( p\overline{p} \) → W \^{}{±}/Z\^{}{0} + jets, Nucl. Phys., B 262, 235, (1985)
[110] Gastmans, R.; Wu, T., The ubiquitous photon: helicity method for QED and QCD, Int. Ser. Monogr. Phys., 80, 1, (1990)
[111] Xu, Z.; Zhang, D-H; Chang, L., Helicity amplitudes for multiple bremsstrahlung in massless non-abelian gauge theories, Nucl. Phys., B 291, 392, (1987)
[112] Gunion, JF; Kunszt, Z., Improved analytic techniques for tree graph calculations and the \( Ggq\overline{q} \) lepton anti-lepton subprocess, Phys. Lett., B 161, 333, (1985)
[113] Hagiwara, K.; Zeppenfeld, D., Helicity amplitudes for heavy lepton production in e\^{}{+}e\^{}{−} annihilation, Nucl. Phys., B 274, 1, (1986)
[114] Mangano, ML; Parke, SJ, Multiparton amplitudes in gauge theories, Phys. Rept., 200, 301, (1991)
[115] Duca, V.; Dixon, LJ; Maltoni, F., New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys., B 571, 51, (2000)
[116] F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color flow decomposition of QCD amplitudes, Phys. Rev.D 67 (2003) 014026 [hep-ph/0209271] [INSPIRE].
[117] Duhr, C.; Hoeche, S.; Maltoni, F., Color-dressed recursive relations for multi-parton amplitudes, JHEP, 08, 062, (2006)
[118] Hagiwara, K.; Kanzaki, J.; Li, Q.; Mawatari, K., HELAS and madgraph/madevent with spin-2 particles, Eur. Phys. J., C 56, 435, (2008)
[119] Hagiwara, K.; Kanzaki, J.; Okamura, N.; Rainwater, D.; Stelzer, T., Fast calculation of HELAS amplitudes using graphics processing unit (GPU), Eur. Phys. J., C 66, 477, (2010)
[120] Hagiwara, K.; Kanzaki, J.; Okamura, N.; Rainwater, D.; Stelzer, T., Calculation of HELAS amplitudes for QCD processes using graphics processing unit (GPU), Eur. Phys. J., C 70, 513, (2010)
[121] Bahr, M.; etal., HERWIG++ physics and manual, Eur. Phys. J., C 58, 639, (2008)
[122] J. Bellm et al., HERWIG++ 2\(.\)7 release note, arXiv:1310.6877 [INSPIRE].
[123] Sjöstrand, T.; Mrenna, S.; Skands, PZ, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun., 178, 852, (2008) · Zbl 1196.81038
[124] N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett.B 429 (1998) 263 [hep-ph/9803315] [INSPIRE]. · Zbl 1355.81103
[125] Frederix, R.; etal., Four-lepton production at hadron colliders: amc@NLO predictions with theoretical uncertainties, JHEP, 02, 099, (2012)
[126] Alwall, J.; Li, Q.; Maltoni, F., Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, Phys. Rev., D 85, 014031, (2012)
[127] Frederix, R.; etal., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett., B 732, 142, (2014)
[128] Kondo, K., Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models, J. Phys. Soc. Jap., 57, 4126, (1988)
[129] Dalitz, RH; Goldstein, GR, The decay and polarization properties of the top quark, Phys. Rev., D 45, 1531, (1992)
[130] Kondo, K., Dynamical likelihood method and top quark mass measurement at CDF, J. Phys. Conf. Ser., 53, 202, (2006)
[131] Gao, Y.; etal., Spin determination of single-produced resonances at hadron colliders, Phys. Rev., D 81, 075022, (2010)
[132] Avery, P.; etal., Precision studies of the Higgs boson decay channel H → ZZ → 4ℓ with MEKD, Phys. Rev., D 87, 055006, (2013)
[133] Campbell, JM; Giele, WT; Williams, C., The matrix element method at next-to-leading order, JHEP, 11, 043, (2012)
[134] Gainer, JS; Lykken, J.; Matchev, KT; Mrenna, S.; Park, M., Geolocating the Higgs boson candidate at the LHC, Phys. Rev. Lett., 111, 041801, (2013)
[135] T. Plehn, P. Schichtel and D. Wiegand, MadMax, or where boosted significances come from, arXiv:1311.2591 [INSPIRE].
[136] Artoisenet, P.; Lemaitre, V.; Maltoni, F.; Mattelaer, O., Automation of the matrix element reweighting method, JHEP, 12, 068, (2010) · Zbl 1294.81311
[137] P. Artoisenet and O. Mattelaer, MadWeight5\(.\)0, in preparation.
[138] Alwall, J.; Freitas, A.; Mattelaer, O., The matrix element method and QCD radiation, Phys. Rev., D 83, 074010, (2011)
[139] Artoisenet, P.; Aquino, P.; Maltoni, F.; Mattelaer, O., Unravelling \( t\overline{t} h \) via the matrix element method, Phys. Rev. Lett., 111, 091802, (2013)
[140] Gleisberg, T.; etal., SHERPA 1.α: a proof of concept version, JHEP, 02, 056, (2004)
[141] Sjöstrand, T.; Mrenna, S.; Skands, PZ, PYTHIA 6.4 physics and manual, JHEP, 05, 026, (2006) · Zbl 1368.81015
[142] Corcella, G.; etal., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP, 01, 010, (2001)
[143] G. Corcella et al., HERWIG 6\(.\)5 release note, hep-ph/0210213 [INSPIRE].
[144] Catani, S.; Dokshitzer, YL; Seymour, MH; Webber, BR, Longitudinally invariant K_{t} clustering algorithms for hadron hadron collisions, Nucl. Phys., B 406, 187, (1993)
[145] Lönnblad, L., Correcting the color dipole cascade model with fixed order matrix elements, JHEP, 05, 046, (2002)
[146] Lönnblad, L.; Prestel, S., Matching tree-level matrix elements with interleaved showers, JHEP, 03, 019, (2012)
[147] Lönnblad, L.; Prestel, S., Unitarising matrix element + parton shower merging, JHEP, 02, 094, (2013) · Zbl 1342.81693
[148] Alwall, J.; etal., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J., C 53, 473, (2008)
[149] Alwall, J.; Visscher, S.; Maltoni, F., QCD radiation in the production of heavy colored particles at the LHC, JHEP, 02, 017, (2009)
[150] Aquino, P.; Maltoni, F.; Mawatari, K.; Oexl, B., Light gravitino production in association with gluinos at the LHC, JHEP, 10, 008, (2012)
[151] Artoisenet, P.; etal., A framework for Higgs characterisation, JHEP, 11, 043, (2013)
[152] F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP02 (2003) 027 [hep-ph/0208156] [INSPIRE].
[153] Kleiss, R.; Pittau, R., Weight optimization in multichannel Monte Carlo, Comput. Phys. Commun., 83, 141, (1994)
[154] Passarino, G.; Veltman, MJG, One loop corrections for e\^{}{+}e\^{}{−} annihilation into μ\^{}{+}μ\^{}{−} in the Weinberg model, Nucl. Phys., B 160, 151, (1979)
[155] Davydychev, AI, A simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett., B 263, 107, (1991)
[156] Ossola, G.; Papadopoulos, CG; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042, (2008)
[157] ’t Hooft, G.; Veltman, MJG, Regularization and renormalization of gauge fields, Nucl. Phys., B 44, 189, (1972)
[158] Ossola, G.; Papadopoulos, CG; Pittau, R., On the rational terms of the one-loop amplitudes, JHEP, 05, 004, (2008)
[159] Draggiotis, P.; Garzelli, MV; Papadopoulos, CG; Pittau, R., Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP, 04, 072, (2009)
[160] M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP01 (2010) 040 [Erratum ibid.10 (2010) 097] [arXiv:0910.3130] [INSPIRE]. · Zbl 1291.81449
[161] Garzelli, MV; Malamos, I.; Pittau, R., Feynman rules for the rational part of the electroweak 1-loop amplitudes in the R_{x}i gauge and in the unitary gauge, JHEP, 01, 029, (2011) · Zbl 1214.81328
[162] Shao, H-S; Zhang, Y-J; Chao, K-T, Feynman rules for the rational part of the standard model one-loop amplitudes in the ’t Hooft-veltman γ_{5} scheme, JHEP, 09, 048, (2011) · Zbl 1301.81360
[163] Pittau, R., Primary Feynman rules to calculate the epsilon-dimensional integrand of any 1-loop amplitude, JHEP, 02, 029, (2012) · Zbl 1309.81283
[164] Shao, H-S; Zhang, Y-J, Feynman rules for the rational part of one-loop QCD corrections in the MSSM, JHEP, 06, 112, (2012)
[165] Page, B.; Pittau, R., R_{2} vertices for the effective ggh theory, JHEP, 09, 078, (2013)
[166] Binoth, T.; Guillet, JP; Heinrich, G., Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP, 02, 013, (2007)
[167] Badger, SD, Direct extraction of one loop rational terms, JHEP, 01, 049, (2009) · Zbl 1243.81219
[168] H.-S. Shao, Iregi user manual, unpublished.
[169] J. Fleischer, T. Riemann and V. Yundin, New developments in PJFry, PoS(LL2012)020 [arXiv:1210.4095] [INSPIRE].
[170] V. Yundin, Massive loop corrections for collider physics, Ph.D. thesis, Humboldt-Universitat zu Berlin, Berlin Germany (2012).
[171] P. Nason, MINT: a computer program for adaptive Monte Carlo integration and generation of unweighted distributions, arXiv:0709.2085 [INSPIRE].
[172] Frixione, S.; Nason, P.; Webber, BR, Matching NLO QCD and parton showers in heavy flavor production, JHEP, 08, 007, (2003)
[173] Frixione, S.; Laenen, E.; Motylinski, P.; Webber, BR, Single-top production in MC@NLO, JHEP, 03, 092, (2006)
[174] Torrielli, P.; Frixione, S., Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP, 04, 110, (2010) · Zbl 1272.81198
[175] Frixione, S.; Stoeckli, F.; Torrielli, P.; Webber, BR, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP, 01, 053, (2011) · Zbl 1214.81299
[176] Lönnblad, L., ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun., 71, 15, (1992)
[177] Z. Nagy and D.E. Soper, A new parton shower algorithm: shower evolution, matching at leading and next-to-leading order level, hep-ph/0601021 [INSPIRE].
[178] Dinsdale, M.; Ternick, M.; Weinzierl, S., Parton showers from the dipole formalism, Phys. Rev., D 76, 094003, (2007)
[179] Schumann, S.; Krauss, F., A parton shower algorithm based on catani-seymour dipole factorisation, JHEP, 03, 038, (2008)
[180] Winter, J-C; Krauss, F., Initial-state showering based on colour dipoles connected to incoming parton lines, JHEP, 07, 040, (2008)
[181] Platzer, S.; Gieseke, S., Dipole showers and automated NLO matching in HERWIG++, Eur. Phys. J., C 72, 2187, (2012)
[182] Ritzmann, M.; Kosower, DA; Skands, P., Antenna showers with hadronic initial states, Phys. Lett., B 718, 1345, (2013) · Zbl 1372.81157
[183] Friberg, C.; Gustafson, G.; Hakkinen, J., Color connections in e\^{}{+}e\^{}{−} annihilation, Nucl. Phys., B 490, 289, (1997)
[184] Giele, WT; Kosower, DA; Skands, PZ, Higher-order corrections to timelike jets, Phys. Rev., D 84, 054003, (2011)
[185] Platzer, S.; Sjodahl, M., Subleading N_{c} improved parton showers, JHEP, 07, 042, (2012)
[186] Nagy, Z.; Soper, DE, Parton shower evolution with subleading color, JHEP, 06, 044, (2012)
[187] Altarelli, G.; Parisi, G., Asymptotic freedom in parton language, Nucl. Phys., B 126, 298, (1977)
[188] Odagiri, K., Color connection structure of supersymmetric QCD (2 → 2) processes, JHEP, 10, 006, (1998)
[189] Nason, P.; Webber, B., Next-to-leading-order event generators, Ann. Rev. Nucl. Part. Sci., 62, 187, (2012)
[190] S. Hoeche, F. Krauss and M. Schonherr, Uncertainties in MEPS@NLO calculations of h + jets, arXiv:1401.7971 [INSPIRE].
[191] Frederix, R.; Frixione, S., Merging meets matching in MC@NLO, JHEP, 12, 061, (2012)
[192] Catani, S.; Krauss, F.; Kuhn, R.; Webber, BR, QCD matrix elements + parton showers, JHEP, 11, 063, (2001)
[193] Krauss, F., Matrix elements and parton showers in hadronic interactions, JHEP, 08, 015, (2002)
[194] Mrenna, S.; Richardson, P., Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP, 05, 040, (2004)
[195] Lavesson, N.; Lönnblad, L., W + jets matrix elements and the dipole cascade, JHEP, 07, 054, (2005)
[196] Hoeche, S.; Krauss, F.; Schumann, S.; Siegert, F., QCD matrix elements and truncated showers, JHEP, 05, 053, (2009)
[197] Hamilton, K.; Richardson, P.; Tully, J., A modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP, 11, 038, (2009)
[198] Lavesson, N.; Lönnblad, L., Extending CKKW-merging to one-loop matrix elements, JHEP, 12, 070, (2008)
[199] Hamilton, K.; Nason, P., Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP, 06, 039, (2010)
[200] Hoche, S.; Krauss, F.; Schonherr, M.; Siegert, F., NLO matrix elements and truncated showers, JHEP, 08, 123, (2011)
[201] Alioli, S.; Hamilton, K.; Re, E., Practical improvements and merging of POWHEG simulations for vector boson production, JHEP, 09, 104, (2011)
[202] Hoeche, S.; Krauss, F.; Schonherr, M.; Siegert, F., QCD matrix elements + parton showers: the NLO case, JHEP, 04, 027, (2013)
[203] Plätzer, S., Controlling inclusive cross sections in parton shower + matrix element merging, JHEP, 08, 114, (2013)
[204] Alioli, S.; etal., Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA, JHEP, 09, 120, (2013)
[205] Lönnblad, L.; Prestel, S., Merging multi-leg NLO matrix elements with parton showers, JHEP, 03, 166, (2013)
[206] Hamilton, K.; Nason, P.; Oleari, C.; Zanderighi, G., Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP, 05, 082, (2013)
[207] Alioli, S.; etal., Matching fully differential NNLO calculations and parton showers, JHEP, 06, 089, (2014)
[208] Bozzi, G.; Catani, S.; Florian, D.; Grazzini, M., Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys., B 737, 73, (2006) · Zbl 1109.81387
[209] Stuart, RG, Gauge invariance, analyticity and physical observables at the Z\^{}{0} resonance, Phys. Lett., B 262, 113, (1991)
[210] Aeppli, A.; Oldenborgh, GJ; Wyler, D., Unstable particles in one loop calculations, Nucl. Phys., B 428, 126, (1994)
[211] Frixione, S.; Laenen, E.; Motylinski, P.; Webber, BR, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations, JHEP, 04, 081, (2007)
[212] Richardson, P., Spin correlations in Monte Carlo simulations, JHEP, 11, 029, (2001)
[213] Artoisenet, P.; Frederix, R.; Mattelaer, O.; Rietkerk, R., Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP, 03, 015, (2013)
[214] Papanastasiou, AS; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F., Single-top t-channel production with off-shell and non-resonant effects, Phys. Lett., B 726, 223, (2013)
[215] J. Conway, Pretty Good Simulator webpage, http://www.physics.ucdavis.edu/∼conway/research/software/pgs/pgs4-general.htm.
[216] DELPHES 3. collaboration; Favereau, J.; etal., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP, 02, 057, (2014)
[217] S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
[218] SM Working group collaboration, Proceedings of the workshop physics at TeV colliders, Les Houches, 2013, to appear.
[219] Martin, AD; Stirling, WJ; Thorne, RS; Watt, G., Parton distributions for the LHC, Eur. Phys. J., C 63, 189, (2009) · Zbl 1369.81126
[220] Cacciari, M.; Salam, GP; Soyez, G., The anti-k_{t} jet clustering algorithm, JHEP, 04, 063, (2008)
[221] S. Frixione, Isolated photons in perturbative QCD, Phys. Lett.B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].
[222] Frederix, R.; Re, E.; Torrielli, P., Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and amc@NLO, JHEP, 09, 130, (2012)
[223] Campbell, JM; Ellis, RK, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev., D 65, 113007, (2002)
[224] Campbell, JM; Ellis, RK; Rainwater, DL, Next-to-leading order QCD predictions for W +2 jet and Z + 2 jet production at the CERN LHC, Phys. Rev., D 68, 094021, (2003)
[225] Campbell, JM; Ellis, RK; Nason, P.; Zanderighi, G., W and Z bosons in association with two jets using the POWHEG method, JHEP, 08, 005, (2013)
[226] Campbell, JM; etal., Associated production of a W boson and one b jet, Phys. Rev., D 79, 034023, (2009)
[227] Campbell, JM; Ellis, RK; Maltoni, F.; Willenbrock, S., Associated production of a Z boson and a single heavy quark jet, Phys. Rev., D 69, 074021, (2004)
[228] J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a Z boson and two jets with one heavy-quark tag, Phys. Rev.D 73 (2006) 054007 [Erratum ibid.D 77 (2008) 019903] [hep-ph/0510362] [INSPIRE].
[229] Campbell, JM; Ellis, RK; Maltoni, F.; Willenbrock, S., Production of a W boson and two jets with one b\^{}{−} quark tag, Phys. Rev., D 75, 054015, (2007)
[230] Campbell, JM; Caola, F.; Febres Cordero, F.; Reina, L.; Wackeroth, D., NLO QCD predictions for W + 1 jet and W + 2 jet production with at least one b jet at the 7 TeV LHC, Phys. Rev., D 86, 034021, (2012)
[231] Alioli, S.; Nason, P.; Oleari, C.; Re, E., NLO vector-boson production matched with shower in POWHEG, JHEP, 07, 060, (2008)
[232] Alioli, S.; Nason, P.; Oleari, C.; Re, E., Vector boson plus one jet production in POWHEG, JHEP, 01, 095, (2011) · Zbl 1214.81343
[233] Re, E., NLO corrections merged with parton showers for Z + 2 jets production using the POWHEG method, JHEP, 10, 031, (2012)
[234] Ellis, RK; Melnikov, K.; Zanderighi, G., Generalized unitarity at work: first NLO QCD results for hadronic W + 3 jet production, JHEP, 04, 077, (2009)
[235] Melnikov, K.; Zanderighi, G., W + 3 jet production at the LHC as a signal or background, Phys. Rev., D 81, 074025, (2010)
[236] Berger, CF; etal., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett., 102, 222001, (2009)
[237] Berger, CF; etal., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev., D 80, 074036, (2009)
[238] Berger, CF; etal., Next-to-leading order QCD predictions for Z, γ\^{}{*} + -jet distributions at the tevatron, Phys. Rev., D 82, 074002, (2010)
[239] Berger, CF; etal., Precise predictions for W + 4 jet production at the large hadron collider, Phys. Rev. Lett., 106, 092001, (2011)
[240] Ita, H.; etal., Precise predictions for Z + 4 jets at hadron colliders, Phys. Rev., D 85, 031501, (2012)
[241] Hoeche, S.; Krauss, F.; Schonherr, M.; Siegert, F., W + n-jet predictions at the large hadron collider at next-to-leading order matched with a parton shower, Phys. Rev. Lett., 110, 052001, (2013)
[242] Catani, S.; Fontannaz, M.; Guillet, JP; Pilon, E., Cross-section of isolated prompt photons in hadron hadron collisions, JHEP, 05, 028, (2002)
[243] Bern, Z.; etal., Driving missing data at next-to-leading order, Phys. Rev., D 84, 114002, (2011)
[244] K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosonsmanual for version 2\(.\)5\(.\)0, arXiv:1107.4038 [INSPIRE].
[245] Jager, B.; Schneider, S.; Zanderighi, G., Next-to-leading order QCD corrections to electroweak zjj production in the POWHEG BOX, JHEP, 09, 083, (2012)
[246] Mele, B.; Nason, P.; Ridolfi, G., QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys., B 357, 409, (1991)
[247] Ohnemus, J.; Owens, JF, An order α_{s} calculation of hadronic ZZ production, Phys. Rev., D 43, 3626, (1991)
[248] Frixione, S.; Nason, P.; Ridolfi, G., Strong corrections to W Z production at hadron colliders, Nucl. Phys., B 383, 3, (1992)
[249] Ohnemus, J., An order α_{s} calculation of hadronic W\^{}{−}W\^{}{+} production, Phys. Rev., D 44, 1403, (1991)
[250] Ohnemus, J., An order α_{s} calculation of hadronic W\^{}{±}Z production, Phys. Rev., D 44, 3477, (1991)
[251] Frixione, S., A next-to-leading order calculation of the cross-section for the production of W\^{}{+}W\^{}{−} pairs in hadronic collisions, Nucl. Phys., B 410, 280, (1993)
[252] Campbell, JM; Ellis, RK, An update on vector boson pair production at hadron colliders, Phys. Rev., D 60, 113006, (1999)
[253] Dixon, LJ; Kunszt, Z.; Signer, A., Vector boson pair production in hadronic collisions at order α_{s}: lepton correlations and anomalous couplings, Phys. Rev., D 60, 114037, (1999)
[254] Florian, D.; Signer, A., Wγ and Zγ production at hadron colliders, Eur. Phys. J., C 16, 105, (2000)
[255] Greiner, N.; etal., NLO QCD corrections to the production of W \^{}{+}W \^{}{−} plus two jets at the LHC, Phys. Lett., B 713, 277, (2012)
[256] Campbell, JM; Ellis, RK; Williams, C., Vector boson pair production at the LHC, JHEP, 07, 018, (2011)
[257] Nason, P.; Ridolfi, G., A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP, 08, 077, (2006)
[258] Melia, T.; Nason, P.; Rontsch, R.; Zanderighi, G., W \^{}{+}W \^{}{−}, W Z and ZZ production in the POWHEG BOX, JHEP, 11, 078, (2011)
[259] Nason, P.; Zanderighi, G., W \^{}{+}W \^{}{−}, W Z and ZZ production in the POWHEG-BOX-V 2, Eur. Phys. J., C 74, 2702, (2014)
[260] Duca, V.; Maltoni, F.; Nagy, Z.; Trócsányi, Z., QCD radiative corrections to prompt diphoton production in association with a jet at hadron colliders, JHEP, 04, 059, (2003)
[261] Gehrmann, T.; Greiner, N.; Heinrich, G., Precise QCD predictions for the production of a photon pair in association with two jets, Phys. Rev. Lett., 111, 222002, (2013)
[262] Badger, S.; Guffanti, A.; Yundin, V., Next-to-leading order QCD corrections to di-photon production in association with up to three jets at the large hadron collider, JHEP, 03, 122, (2014)
[263] Z. Bern et al., Next-to-leading order diphoton + 2-jet production at the LHC, arXiv:1312.0592 [INSPIRE].
[264] Z. Bern et al., Next-to-leading order γγ + 2-jet production at the LHC, arXiv:1402.4127 [INSPIRE].
[265] Melia, T.; Melnikov, K.; Rontsch, R.; Zanderighi, G., Next-to-leading order QCD predictions for W \^{}{+}W \^{}{+}jj production at the LHC, JHEP, 12, 053, (2010)
[266] Campanario, F.; Kerner, M.; Ninh, LD; Zeppenfeld, D., Next-to-leading order QCD corrections to W \^{}{+}W \^{}{+} and W \^{}{−}W \^{}{−} production in association with two jets, Phys. Rev., D 89, 054009, (2014)
[267] Campbell, JM; Hartanto, HB; Williams, C., Next-to-leading order predictions for Zγ + jet and Zγγ final states at the LHC, JHEP, 11, 162, (2012)
[268] F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, Next-to-leading order QCD corrections to Wγ production in association with two jets, arXiv:1402.0505 [INSPIRE].
[269] F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, NLO QCD corrections to WZjj production at the LHC, arXiv:1310.4369 [INSPIRE].
[270] Campanario, F.; Englert, C.; Spannowsky, M.; Zeppenfeld, D., NLO-QCD corrections to Wγj production, Europhys. Lett., 88, 11001, (2009)
[271] Campanario, F.; Englert, C.; Spannowsky, M., Precise predictions for (non-standard) Wγ + jet production, Phys. Rev., D 83, 074009, (2011)
[272] Campanario, F.; Englert, C.; Kallweit, S.; Spannowsky, M.; Zeppenfeld, D., NLO QCD corrections to W Z + jet production with leptonic decays, JHEP, 07, 076, (2010)
[273] Jager, B.; Zanderighi, G., Electroweak W \^{}{+}W \^{}{−}jj prodution at NLO in QCD matched with parton shower in the POWHEG-BOX, JHEP, 04, 024, (2013)
[274] Schissler, F.; Zeppenfeld, D., Parton shower effects on W and Z production via vector boson fusion at NLO QCD, JHEP, 04, 057, (2013)
[275] Jäger, B.; Karlberg, A.; Zanderighi, G., Electroweak zzjj production in the standard model and beyond in the POWHEG-BOX-V 2, JHEP, 03, 141, (2014)
[276] Bozzi, G.; Campanario, F.; Rauch, M.; Zeppenfeld, D., Zγγ production with leptonic decays and triple photon production at next-to-leading order QCD, Phys. Rev., D 84, 074028, (2011)
[277] Bozzi, G.; Campanario, F.; Rauch, M.; Zeppenfeld, D., W\^{}{+−}γγ production with leptonic decays at NLO QCD, Phys. Rev., D 83, 114035, (2011)
[278] Bozzi, G.; Campanario, F.; Rauch, M.; Rzehak, H.; Zeppenfeld, D., NLO QCD corrections to W \^{}{±}Zγ production with leptonic decays, Phys. Lett., B 696, 380, (2011)
[279] Bozzi, G.; Campanario, F.; Hankele, V.; Zeppenfeld, D., NLO QCD corrections to W\^{}{+}W\^{}{−}γ and ZZγ production with leptonic decays, Phys. Rev., D 81, 094030, (2010)
[280] Campanario, F.; Hankele, V.; Oleari, C.; Prestel, S.; Zeppenfeld, D., QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev., D 78, 094012, (2008)
[281] Campbell, JM; Williams, C., Triphoton production at hadron colliders, Phys. Rev., D 89, 113001, (2014)
[282] M.K. Mandal, P. Mathews, V. Ravindran and S. Seth, Three photon production to NLO + PS accuracy at the LHC, arXiv:1403.2917 [INSPIRE].
[283] Lazopoulos, A.; Melnikov, K.; Petriello, F., QCD corrections to tri-boson production, Phys. Rev., D 76, 014001, (2007)
[284] Campanario, F.; Englert, C.; Rauch, M.; Zeppenfeld, D., Precise predictions for Wγγ + jet production at hadron colliders, Phys. Lett., B 704, 515, (2011)
[285] Hoeche, S.; etal., Triple vector boson production through Higgs-strahlung with NLO multijet merging, Phys. Rev., D 89, 093015, (2014)
[286] Nason, P.; Dawson, S.; Ellis, RK, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys., B 303, 607, (1988)
[287] Beenakker, W.; Kuijf, H.; Neerven, WL; Smith, J., QCD corrections to heavy quark production in pp collisions, Phys. Rev., D 40, 54, (1989)
[288] P. Nason, S. Dawson and R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions, Nucl. Phys.B 327 (1989) 49 [Erratum ibid.B 335 (1990) 260] [INSPIRE].
[289] Beenakker, W.; Neerven, WL; Meng, R.; Schuler, GA; Smith, J., QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys., B 351, 507, (1991)
[290] Mangano, ML; Nason, P.; Ridolfi, G., Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys., B 373, 295, (1992)
[291] Frixione, S.; Nason, P.; Ridolfi, G., A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP, 09, 126, (2007)
[292] Dittmaier, S.; Uwer, P.; Weinzierl, S., NLO QCD corrections to \( t\overline{t} \) + jet production at hadron colliders, Phys. Rev. Lett., 98, 262002, (2007)
[293] Melnikov, K.; Scharf, A.; Schulze, M., Top quark pair production in association with a jet: QCD corrections and jet radiation in top quark decays, Phys. Rev., D 85, 054002, (2012)
[294] Alioli, S.; Moch, S-O; Uwer, P., Hadronic top-quark pair-production with one jet and parton showering, JHEP, 01, 137, (2012)
[295] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Worek, M., Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of pp → \( t\overline{t} \) + 2 jets at next-to-leading order, Phys. Rev. Lett., 104, 162002, (2010)
[296] M. Schönherr, S. Höche, J. Huang, G. Luisoni and J. Winter, NLO merging in\( t\overline{t} \)+ jets, PoS(EPS-HEP 2013)246 [arXiv:1311.3621] [INSPIRE].
[297] S. Hoeche et al., Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower, arXiv:1402.6293 [INSPIRE].
[298] Nagy, Z., Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev., D 68, 094002, (2003)
[299] Badger, S.; Biedermann, B.; Uwer, P.; Yundin, V., NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \( \sqrt{s} \) = 8 TeV, Phys. Lett., B 718, 965, (2013)
[300] Badger, S.; Biedermann, B.; Uwer, P.; Yundin, V., Next-to-leading order QCD corrections to five jet production at the LHC, Phys. Rev., D 89, 034019, (2014)
[301] Alioli, S.; Hamilton, K.; Nason, P.; Oleari, C.; Re, E., Jet pair production in POWHEG, JHEP, 04, 081, (2011)
[302] Kardos, A.; Nason, P.; Oleari, C., Three-jet production in POWHEG, JHEP, 04, 043, (2014)
[303] Greiner, N.; Guffanti, A.; Reiter, T.; Reuter, J., NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC, Phys. Rev. Lett., 107, 102002, (2011)
[304] Bevilacqua, G.; Czakon, M.; Krämer, M.; Kubocz, M.; Worek, M., Quantifying quark mass effects at the LHC: a study of pp → \( b\overline{b} b\overline{b} \) + X at next-to-leading order, JHEP, 07, 095, (2013)
[305] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Pittau, R.; Worek, M., Assault on the NLO wishlist: pp → \( t\overline{t} b\overline{b} \), JHEP, 09, 109, (2009)
[306] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to pp → \( t\overline{t} b\overline{b} \) + X at the LHC, Phys. Rev. Lett., 103, 012002, (2009)
[307] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results, JHEP, 03, 021, (2010) · Zbl 1271.81172
[308] Bevilacqua, G.; Worek, M., Constraining BSM physics at the LHC: four top final states with NLO accuracy in perturbative QCD, JHEP, 07, 111, (2012)
[309] Ellis, RK; Veseli, S., Strong radiative corrections to \( W\ b\overline{b} \) production in \( p\overline{p} \) collisions, Phys. Rev., D 60, 011501, (1999)
[310] Badger, S.; Campbell, JM; Ellis, RK, QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations, JHEP, 03, 027, (2011) · Zbl 1301.81285
[311] Frederix, R.; etal., W and Z/γ* boson production in association with a bottom-antibottom pair, JHEP, 09, 061, (2011)
[312] C. Oleari and L. Reina, \( {W}^{± } b\overline{b} \)production in POWHEG, JHEP08 (2011) 061 [Erratum ibid.11 (2011) 040] [arXiv:1105.4488] [INSPIRE].
[313] Campbell, JM; Ellis, RK, Radiative corrections to \( Zb\overline{b} \) production, Phys. Rev., D 62, 114012, (2000)
[314] Melnikov, K.; Schulze, M.; Scharf, A., QCD corrections to top quark pair production in association with a photon at hadron colliders, Phys. Rev., D 83, 074013, (2011)
[315] Lazopoulos, A.; McElmurry, T.; Melnikov, K.; Petriello, F., Next-to-leading order QCD corrections to \( t\overline{t} Z \) production at the LHC, Phys. Lett., B 666, 62, (2008)
[316] Garzelli, MV; Kardos, A.; Papadopoulos, CG; Trócsányi, Z., \( t\overline{t}{W}^{+-} \) and \( t\overline{t} Z \) hadroproduction at NLO accuracy in QCD with parton shower and hadronization effects, JHEP, 11, 056, (2012)
[317] Campbell, JM; Ellis, RK, \( t\overline{t}{W}^{+-} \) production and decay at NLO, JHEP, 07, 052, (2012)
[318] Stelzer, T.; Willenbrock, S., Single top quark production via \( q\overline{q}→ t\overline{b} \), Phys. Lett., B 357, 125, (1995)
[319] Stelzer, T.; Sullivan, Z.; Willenbrock, S., Single top quark production via W-gluon fusion at next-to-leading order, Phys. Rev., D 56, 5919, (1997)
[320] Campbell, JM; Ellis, RK; Tramontano, F., Single top production and decay at next-to-leading order, Phys. Rev., D 70, 094012, (2004)
[321] Campbell, JM; Frederix, R.; Maltoni, F.; Tramontano, F., NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders, JHEP, 10, 042, (2009)
[322] Campbell, JM; Frederix, R.; Maltoni, F.; Tramontano, F., Next-to-leading-order predictions for t-channel single-top production at hadron colliders, Phys. Rev. Lett., 102, 182003, (2009)
[323] Campbell, JM; Tramontano, F., Next-to-leading order corrections to wt production and decay, Nucl. Phys., B 726, 109, (2005) · Zbl 1113.81317
[324] Frixione, S.; Laenen, E.; Motylinski, P.; Webber, BR; White, CD, Single-top hadroproduction in association with a W boson, JHEP, 07, 029, (2008)
[325] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP09 (2009) 111 [Erratum ibid.02 (2010) 011] [arXiv:0907.4076] [INSPIRE].
[326] Re, E., Single-top wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J., C 71, 1547, (2011)
[327] Campbell, J.; Ellis, RK; Rötsch, R., Single top production in association with a Z boson at the LHC, Phys. Rev., D 87, 114006, (2013)
[328] LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
[329] LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].
[330] LHC Higgs Cross section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
[331] Baglio, J.; etal., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP, 04, 151, (2013)
[332] T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys.B 479 (1996) 46 [Erratum ibid.B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
[333] Dawson, S.; Dittmaier, S.; Spira, M., Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev., D 58, 115012, (1998)
[334] Signer, A.; Dixon, LJ, Electron-positron annihilation into four jets at next-to-leading order in α_{s}, Phys. Rev. Lett., 78, 811, (1997)
[335] A. Signer, Next-to-leading order corrections to e\^{}{+}\(e\)\^{}{−} → four jets, hep-ph/9705218 [INSPIRE]. · Zbl 0940.81047
[336] Nagy, Z.; Trócsányi, Z., Four jet production in e\^{}{+}e\^{}{−} annihilation at next-to-leading order, Nucl. Phys. Proc. Suppl., 64, 63, (1998)
[337] Nagy, Z.; Trócsányi, Z., Next-to-leading order calculation of four jet shape variables, Phys. Rev. Lett., 79, 3604, (1997)
[338] Frederix, R.; Frixione, S.; Melnikov, K.; Zanderighi, G., NLO QCD corrections to five-jet production at LEP and the extraction of α_{s}(M_{Z}), JHEP, 11, 050, (2010)
[339] Bilenky, MS; Rodrigo, G.; Santamaria, A., Three jet production at LEP and the bottom quark mass, Nucl. Phys., B 439, 505, (1995)
[340] Schmidt, CR, Top quark production and decay at next-to-leading order in e\^{}{+}e\^{}{−} annihilation, Phys. Rev., D 54, 3250, (1996)
[341] C. Oleari, Next-to-leading order corrections to the production of heavy flavor jets in e\^{}{+}\(e\)\^{}{−}collisions, hep-ph/9802431 [INSPIRE].
[342] Nason, P.; Oleari, C., Next-to-leading order corrections to the production of heavy flavor jets in e\^{}{+}e\^{}{−} collisions, Nucl. Phys., B 521, 237, (1998)
[343] Bernreuther, W.; Brandenburg, A.; Uwer, P., Next-to-leading order QCD corrections to three jet cross-sections with massive quarks, Phys. Rev. Lett., 79, 189, (1997)
[344] Brandenburg, A.; Uwer, P., Next-to-leading order QCD corrections and massive quarks in e + e − → three jets, Nucl. Phys., B 515, 279, (1998)
[345] A. Brandenburg, The reaction e\^{}{+}\(e\)\^{}{−} → \( t\overline{t} g \)at next-to-leading order in α_{s}, hep-ph/9908383 [INSPIRE].
[346] Dittmaier, S.; Krämer, M.; Liao, Y.; Spira, M.; Zerwas, PM, Higgs radiation off top quarks in e\^{}{+}e\^{}{−} collisions, Phys. Lett., B 441, 383, (1998)
[347] Frixione, S.; Torrielli, P.; Zaro, M., Higgs production through vector-boson fusion at the NLO matched with parton showers, Phys. Lett., B 726, 273, (2013)
[348] ATLAS collaboration, Measurement of top-quark pair differential cross-sections in the l + jets channel in pp collisions at\( \sqrt{s} \) = 7 TeV using the ATLAS detector, ATLAS-CONF-2013-099, CERN, Geneva Switzerland (2013).
[349] CMS collaboration, Measurement of differential top-quark pair production cross sections in pp colisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J., C 73, 2339, (2013)
[350] CMS collaboration, Measurement of differential top-quark pair production cross sections in the lepton + jets channel in pp collisions at 8 TeV, CMS-TOP-12-027, CERN, Geneva Switzerland (2012).
[351] CMS collaboration, Measurement of the differential\( t\overline{t} \)cross section in the dilepton channel at 8 TeV, CMS-TOP-12-028, CERN, Geneva Switzerland (2012).
[352] ATLAS collaboration, Measurement of \( t\overline{t} \) production with a veto on additional central jet activity in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, Eur. Phys. J., C 72, 2043, (2012)
[353] CMS collaboration, Measurement of jet multiplicity distributions in top quark events with two leptons in the final state at a centre-of-mass energy of 7 TeV, CMS-TOP-12-023, CERN, Geneva Switzerland (2012).
[354] CMS collaboration, Measurement of the jet multiplicity in dileptonic top quark pair events at 8 TeV, CMS-TOP-12-041, CERN, Geneva Switzerland (2012).
[355] Dittmaier, S.; Kramer, M., Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev., D 65, 073007, (2002)
[356] Denner, A., Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys., 41, 307, (1993)
[357] Beenakker, W.; etal., NLO QCD corrections to \( t\overline{t} H \) production in hadron collisions, Nucl. Phys., B 653, 151, (2003)
[358] Binoth, T.; Ossola, G.; Papadopoulos, CG; Pittau, R., NLO QCD corrections to tri-boson production, JHEP, 06, 082, (2008)
[359] Melia, T.; Melnikov, K.; Rontsch, R.; Zanderighi, G., NLO QCD corrections for W \^{}{+}W \^{}{−} pair production in association with two jets at hadron colliders, Phys. Rev., D 83, 114043, (2011)
[360] Cullen, G.; etal., Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion, Phys. Rev. Lett., 111, 131801, (2013)
[361] Deurzen, H.; etal., Next-to-leading-order QCD corrections to Higgs boson production in association with a top quark pair and a jet, Phys. Rev. Lett., 111, 171801, (2013)
[362] Kardos, A.; Trócsányi, Z., Hadroproduction of tt pair with a bb pair using powhel, J. Phys., G 41, 075005, (2014)
[363] Kardos, A.; Trócsányi, Z.; Papadopoulos, C., Top quark pair production in association with a Z-boson at NLO accuracy, Phys. Rev., D 85, 054015, (2012)
[364] Garzelli, MV; Kardos, A.; Papadopoulos, CG; Trócsányi, Z., Z\^{}{0}-boson production in association with a top anti-top pair at NLO accuracy with parton shower effects, Phys. Rev., D 85, 074022, (2012)
[365] Kardos, A.; Papadopoulos, C.; Trócsányi, Z., Top quark pair production in association with a jet with NLO parton showering, Phys. Lett., B 705, 76, (2011)
[366] M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].
[367] Cacciari, M.; Frixione, S.; Mangano, ML; Nason, P.; Ridolfi, G., Updated predictions for the total production cross sections of top and of heavier quark pairs at the tevatron and at the LHC, JHEP, 09, 127, (2008)
[368] Ball, RD; etal., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys., B 838, 136, (2010) · Zbl 1206.81141
[369] Soper, DE; Spannowsky, M., Finding top quarks with shower deconstruction, Phys. Rev., D 87, 054012, (2013)
[370] D.E. Soper and M. Spannowsky, Finding physics signals with event deconstruction, arXiv:1402.1189 [INSPIRE].
[371] Hameren, A., Oneloop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun., 182, 2427, (2011) · Zbl 1262.81253
[372] Ellis, RK; Zanderighi, G., Scalar one-loop integrals for QCD, JHEP, 02, 002, (2008)
[373] Denner, A.; Dittmaier, S., Reduction schemes for one-loop tensor integrals, Nucl. Phys., B 734, 62, (2006) · Zbl 1192.81158
[374] Tarasov, OV, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev., D 54, 6479, (1996) · Zbl 0925.81121
[375] Duplancic, G.; Nizic, B., Reduction method for dimensionally regulated one loop N point Feynman integrals, Eur. Phys. J., C 35, 105, (2004) · Zbl 1191.81116
[376] Cacciari, M.; Salam, GP; Soyez, G., Fastjet user manual, Eur. Phys. J., C 72, 1896, (2012) · Zbl 1393.81007
[377] Kleiss, R.; Stirling, WJ; Ellis, SD, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun., 40, 359, (1986)
[378] L. Garren and P. Lebrun, StdHEP v5 manual, http://cepa.fnal.gov/psm/stdhep/.
[379] Lepage, GP, A new algorithm for adaptive multidimensional integration, J. Comput. Phys., 27, 192, (1978) · Zbl 0377.65010
[380] G.P. Lepage, VEGAS: an adaptive multidimentional integration program, CLNS-80/447, (1980) [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.