×

zbMATH — the first resource for mathematics

Gauge invariance at work in FDR: \(H\to \gamma\gamma\). (English) Zbl 1342.81275

MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett., B 716, 1, (2012)
[2] CMS collaboration, Observation of a new boson at a mass of 125 gev with the CMS experiment at the LHC, Phys. Lett., B 716, 30, (2012)
[3] Ossola, G.; Papadopoulos, CG; Pittau, R., Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys., B 763, 147, (2007) · Zbl 1116.81067
[4] Berger, C.; etal., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[5] Giele, WT; Kunszt, Z.; Melnikov, K., Full one-loop amplitudes from tree amplitudes, JHEP, 04, 049, (2008) · Zbl 1246.81170
[6] Ellis, RK; Kunszt, Z.; Melnikov, K.; Zanderighi, G., One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Phys. Rept., 518, 141, (2012)
[7] Mastrolia, P.; Mirabella, E.; Ossola, G.; Peraro, T., Scattering amplitudes from multivariate polynomial division, Phys. Lett., B 718, 173, (2012)
[8] Mastrolia, P.; Ossola, G., On the integrand-reduction method for two-loop scattering amplitudes, JHEP, 11, 014, (2011) · Zbl 1306.81357
[9] Badger, S.; Frellesvig, H.; Zhang, Y., An integrand reconstruction method for three-loop amplitudes, JHEP, 08, 065, (2012)
[10] Johansson, H.; Kosower, DA; Larsen, KJ, Two-loop maximal unitarity with external masses, Phys. Rev., D 87, 025030, (2013)
[11] Kleiss, RH; Malamos, I.; Papadopoulos, CG; Verheyen, R., Counting to one: reducibility of one- and two-loop amplitudes at the integrand level, JHEP, 12, 038, (2012)
[12] ’t Hooft, G.; Veltman, M., Regularization and renormalization of gauge fields, Nucl. Phys., B 44, 189, (1972)
[13] Freedman, DZ; Johnson, K.; Latorre, JI, Differential regularization and renormalization: a new method of calculation in quantum field theory, Nucl. Phys., B 371, 353, (1992)
[14] Aguila, F.; Culatti, A.; Muñoz-Tapia, R.; Pérez-Victoria, M., Constraining differential renormalization in abelian gauge theories, Phys. Lett., B 419, 263, (1998)
[15] Aguila, F.; Culatti, A.; Muñoz Tapia, R.; Pérez-Victoria, M., Techniques for one loop calculations in constrained differential renormalization, Nucl. Phys., B 537, 561, (1999) · Zbl 0948.81605
[16] Battistel, O.; Mota, A.; Nemes, M., Consistency conditions for 4D regularizations, Mod. Phys. Lett., A 13, 1597, (1998)
[17] Cherchiglia, A.; Sampaio, M.; Nemes, M., Systematic implementation of implicit regularization for multi-loop Feynman diagrams, Int. J. Mod. Phys., A 26, 2591, (2011) · Zbl 1247.81309
[18] Cynolter, G.; Lendvai, E., Symmetry preserving regularization with a cutoff, Central Eur. J. Phys., 9, 1237, (2011) · Zbl 1274.81168
[19] Wu, Y-L, Symmetry preserving loop regularization and renormalization of qfts, Mod. Phys. Lett., A 19, 2191, (2004) · Zbl 1067.81103
[20] Pittau, R., A four-dimensional approach to quantum field theories, JHEP, 11, 151, (2012)
[21] Ellis, JR; Gaillard, MK; Nanopoulos, DV, A phenomenological profile of the Higgs boson, Nucl. Phys., B 106, 292, (1976)
[22] B. Ioffe and V.A. Khoze, What can be expected from experiments on colliding e\^{+}\(e\)\^{−}beams with e approximately equal to 100 GeV?, Sov. J. Part. Nucl.9 (1978) 50 [Fiz. Elem. Chast. Atom. Yadra9 (1978) 118] [INSPIRE].
[23] M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys.30 (1979) 711 [Yad. Fiz.30 (1979) 1368] [INSPIRE].
[24] T.G. Rizzo, Gluon final states in Higgs boson decay, Phys. Rev.D 22 (1980) 178 [Addendum ibid.D 22 (1980) 1824] [INSPIRE].
[25] Cherchiglia, A.; Cabral, L.; Nemes, M.; Sampaio, M., (un)determined finite regularization dependent quantum corrections: the Higgs decay into two photons and the two photon scattering examples, Phys. Rev., D 87, 065011, (2013)
[26] Shao, H-S; Zhang, Y-J; Chao, K-T, Higgs decay into two photons and reduction schemes in cutoff regularization, JHEP, 01, 053, (2012) · Zbl 1306.81431
[27] A. Dedes and K. Suxho, Anatomy of the Higgs boson decay into two photons in the unitary gauge, arXiv:1210.0141 [INSPIRE]. · Zbl 1328.81253
[28] Piccinini, F.; Pilloni, A.; Polosa, A., H → γγ: a comment on the indeterminacy of non-gauge-invariant integrals, Chin. Phys., C 37, 043102, (2013)
[29] F. Jegerlehner, Comment on Hγγ and the role of the decoupling theorem and the equivalence theorem, arXiv:1110.0869 [INSPIRE].
[30] Huang, D.; Tang, Y.; Wu, Y-L, Note on Higgs decay into two photons H → γγ, Commun. Theor. Phys., 57, 427, (2012) · Zbl 1247.81626
[31] Shifman, M.; Vainshtein, A.; Voloshin, M.; Zakharov, V., Higgs decay into two photons through the W -boson loop: no decoupling in the m_{W} → 0 limit, Phys. Rev., D 85, 013015, (2012)
[32] R. Gastmans, S.L. Wu and T.T. Wu, Higgs decay into two photons, revisited, arXiv:1108.5872 [INSPIRE].
[33] R. Gastmans, S.L. Wu and T.T. Wu, Higgs decay Hγγ through a W loop: difficulty with dimensional regularization, arXiv:1108.5322 [INSPIRE].
[34] Bursa, F.; Cherman, A.; Hammant, TC; Horgan, RR; Wingate, M., Calculation of the one W loop H → γγ decay amplitude with a lattice regulator, Phys. Rev., D 85, 093009, (2012)
[35] Marciano, WJ; Zhang, C.; Willenbrock, S., Higgs decay to two photons, Phys. Rev., D 85, 013002, (2012)
[36] Jegerlehner, F., Facts of life with γ_{5}, Eur. Phys. J., C 18, 673, (2001) · Zbl 1099.81540
[37] Passarino, G.; Veltman, M., One loop corrections for e\^{+}e\^{−} annihilation into μ\^{+}μ\^{−} in the Weinberg model, Nucl. Phys., B 160, 151, (1979)
[38] Draggiotis, P.; Garzelli, M.; Papadopoulos, C.; Pittau, R., Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP, 04, 072, (2009)
[39] M. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP01 (2010) 040 [Erratum ibid.10 (2010) 097] [arXiv:0910.3130] [INSPIRE]. · Zbl 1291.81449
[40] Pittau, R., Primary Feynman rules to calculate the ∈-dimensional integrand of any 1-loop amplitude, JHEP, 02, 029, (2012) · Zbl 1309.81283
[41] Hahn, T., Generating Feynman diagrams and amplitudes with feynarts 3, Comput. Phys. Commun., 140, 418, (2001) · Zbl 0994.81082
[42] Denner, A., Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys., 41, 307, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.