zbMATH — the first resource for mathematics

A dendritic cable model for the amplification of synaptic potentials by an ensemble average of persistent sodium channels. (English) Zbl 0978.92005
Summary: The persistent sodium current density \((I_{\text{NaP} }\)) at the soma measured with the ‘whole-cell’ patch-clamp recording method is linearized about the resting state and used as a current source along the dendritic cable (depicting the spatial distribution of voltage-dependent persistent sodium ionic channels). This procedure allows time-dependent analytical solutions to be obtained for the membrane depolarization. Computer simulated response to a dendritic current injection in the form of synaptically-induced voltage change located at a distance from the recording site in a cable with unequally distributed persistent sodium ion channel densities per unit length of cable (the so-called ‘hot-spots’) is used to obtain conclusions on the density and distribution of persistent sodium ion channels.
It is shown that the excitatory postsynaptic potentials (EPSPs) are amplified if hot-spots of persistent sodium ion channels are spatially distributed along the dendritic cable, with the local density of \(I_{\text{NaP}}\) with respect to the recording site shown to specifically increase the peak amplitude of the EPSP for a proximally placed synaptic input, while the spatial distribution of \(I_{\text{NaP}}\) serves to broaden the time course of the amplified EPSP. However, in the case of a distally positioned synaptic input, both local and nonlocal densities yield an approximately identical enhancement of EPSPs in contradiction to the computer simulations performed by R. Lipowsky et al. [J Neurophysiol. 76, 2181ff (1996)].
The results indicate that persistent sodium channels produce EPSP amplification even when their distribution is relatively sparse (i.e., approximately \(1-2\%\) of the transient sodium channels are found in dendrites of CA1 hippocampal pyramidal neurons). This gives a strong impetus for the use of the theory as a novel approach in the investigation of synaptic integration of signals in active dendrites represented as ionic cables.

92C20 Neural biology
92C05 Biophysics
Full Text: DOI
[1] S.J. Redman, A quantitative approach to integrative function of dendrites, in: R. Porter (Ed.), International Review of Physiology: Neurophysiology II, vol. 10, University Park Press, Baltimore, MD, 1976
[2] Urban, N.N.; Barrionuevo, G., Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons, Proc. nat. acad. sci. USA, 95, 11450, (1998)
[3] Huguenard, J.R.; Hamill, O.P.; Prince, D.A., Sodium channels in dendrites of rat cortical pyramidal neurons, Proc. nat. acad. sci. USA, 86, 2473, (1989)
[4] Stuart, G.; Spruston, N.; Sakmann, B.; Hausser, M., Action potential initiation and backpropagation in neurons of the Mammalian CNS, Trends neurosci., 20, 125, (1997)
[5] Jung, H.-Y.; Mickus, T.; Spruston, N., Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons, J. neurosci., 17, 6639, (1997)
[6] Colbert, C.M.; Magee, J.C.; Hoffman, D.A.; Johnston, D., Slow recovery from inactivation of na^+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons, J. neurophysiol., 17, 6512, (1997)
[7] Regehr, W.; Kehoe, J.; Ascher, P.; Armstrong, C., Synaptically triggered action potentials in dendrites, Neuron, 11, 145, (1993)
[8] Colling, S.B.; Wheal, H.V., Fast sodium action potentials are generated in the distal apical dendrites of rat hippocampal CA1 pyramidal cells, Neurosci. lett., 172, 73, (1994)
[9] Andreasen, M.; Lambert, J.D.C., Regenerative properties of pyramidal cell dendrites in area CA1 of rat hippocampus, J. physiol. (lond.), 483, 421, (1995)
[10] Stuart, G.; Schiller, J.; Sakmann, B., Action potential initiation and propagation in rat neocortical pyramidal neurons, J. physiol. (lond.), 505, 617, (1997)
[11] Golding, N.L.; Spruston, N., Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons, Neuron, 21, 1189, (1998)
[12] Stafstrom, C.E.; Schwindt, P.C.; Chubb, M.C.; Crill, W.E., Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro, J. neurophysiol., 53, 153, (1985)
[13] Thomson, A.M.; Girdlestone, D.; West, D.C., Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices, J. neurophysiol., 60, 1896, (1988)
[14] Sutor, B.; Hablitz, J.J., EPSPs in rat neocortical neurons in vitro. II involvement of NMDA receptors in the generation of epsps, J. neurophysiol., 61, 621, (1989)
[15] Deisz, R.A.; Fortin, G.; Zieglgansberger, W., Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons, J. neurophysiol., 65, 371, (1991)
[16] Nicoll, A.; Larkman, A.; Blakemore, C., Modulation of EPSP shape and efficacy by intrinsic membrane conductances in rat neocortical pyramidal neurons in vitro, J. physiol. (lond.), 468, 693, (1993)
[17] Stuart, G.; Sakmann, B., Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons., Neuron, 15, 1065, (1995)
[18] P.C. Schwindt, W.E. Crill, Membrane properties of cat spinal motoneurons, in: R.A. Davidoff (Ed.), Handbook of the Spinal Cord: Anatomy and Physiology, vols. 2 & 3, Marcel Dekker, New York, 1984
[19] Magee, J.C.; Johnston, D., Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons, Science, 268, 301, (1995)
[20] Vallet, A.M.; Coles, J.A.; Eilbeck, J.C.; Scott, A.C., Membrane conductances involved in amplification of small signals by sodium channels in photoreceptors of drone honey bee, J. physiol. (lond.), 456, 303, (1992)
[21] Hidaka, S.; Ishida, A.T., Voltage-gated na^+ current availability after step- and spike-shaped conditioning depolarizations of retinal ganglion cells, Pflugers arch., 436, 497, (1998)
[22] Stafstrom, C.E.; Schwindt, P.C.; Crill, W.E., Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro, Brain res., 236, 221, (1982)
[23] Schwindt, P.C.; Crill, W.E., Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons, J. neurophysiol., 74, 2220, (1995)
[24] MacVicar, B.A., Depolarizing prepotentials are na^+ dependent in CA1 pyramidal neurons, Brain res., 333, 378, (1985)
[25] Taylor, C.P., Na^+ currents that fail to inactiviate, Trends neurosci., 16, 455, (1993)
[26] Crill, W.E., Persistent sodium current in Mammalian central neurons, Annu. rev. physiol., 58, 349, (1996)
[27] Gillessen, T.; Alzheimer, C., Amplification of EPSPs by low ni^2+ and amiloride-sensitive ca2+ channels in apical dendrites of rat CA1 pyramidal neurons, J. neurophysiol., 77, 1639, (1997)
[28] Urban, N.N.; Henze, D.A.; Barrionuevo, G., Amplifcation of perforant-path EPSPs in CA3 pyramidal cells by LVA calcium and sodium channels, J. neurophysiol., 80, 1558, (1998)
[29] W. Rall, Core conductor theory and cable properties of neurons, in: E.R. Kandel (Eds.), Handbook of Physiology, American Physiological Society, Bethesda, MD, 1977, pp. 39 (Chapter 3)
[30] Byzov, A.L.; Trifonov, A.Yu.; Chailahian, L.M.; Golubtzov, K.W., Amplification of graded potentials in horizontal cells of the retina, Vis. res., 17, 265, (1977)
[31] Taylor, G.C.; Coles, J.A.; Eilbeck, J.C., Conditions under which na^+ channels can boost conduction of small graded potentials, J. theoret. biol., 172, 379, (1995)
[32] Bernander, O.; Koch, C.; Douglas, R.J., Amplification and linearization of distal synaptic input to cortical pyramidal cells, J. neurophysiol., 72, 2743, (1994)
[33] De Schutter, E.; Bower, J.M., Simulated responses of cerebellar purkinje cells are independent of the dendritic location of granule cell synaptic inputs, Proc. nat. acad. sci. USA, 91, 4736, (1994)
[34] White, J.A.; Sekar, N.S.; Kay, A.R., Errors in persistent inward currents generated by space-clamp errors: a modeling study, J. neurophysiol., 73, 2369, (1995)
[35] Lipowsky, R.; Gillessen, T.; Alzheimer, C., Dendritic na^+ channels amplify EPSPs in hippocampal CA1 pyramidal cells, J. neurophysiol., 76, 2181, (1996)
[36] Cook, E.P.; Johnston, D., Active dendrites reduce location-dependent variability of synaptic input trains, J. neurophysiol., 78, 2116, (1997)
[37] Cook, E.P.; Johnston, D., Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input, J. neurophysiol., 81, 535, (1999)
[38] De Schutter, E., Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in purkinje cell model, J. neurophysiol., 80, 504, (1998)
[39] Takagi, H.; Sato, R.; Mori, M.; Ito, E.; Suzuki, H., Roles of A- and D-type K channels in EPSP integration at a model dendrite, Neurosci. lett., 254, 165, (1998)
[40] Mozrzymas, J.W.; Bartoszkiewicz, M., The discrete nature of biological membrane conductance, channel interaction through electrolyte layers and the cable equation, J. theoret. biol., 162, 371, (1993)
[41] Larsson, H.P.; Kleene, S.J.; Lecar, H., Noise analysis of ion channels in non-space-clamped cables: estimates of channel parameters in olfactory cilia, Biophys. J., 72, 1193, (1997)
[42] Andrietti, F.; Bernardini, G., Segmented and ‘equivalent’ representation of the cable equation, Biophys. J., 46, 615, (1984)
[43] Baer, S.M.; Tier, C., An analysis of a dendritic neuron model with an active membrane site, J. math. biol., 23, 137, (1986) · Zbl 0587.92012
[44] Baer, S.M.; Rinzel, J., Propagation of dendritic spikes mediated by excitable spines: a continuum theory, J. neurophysiol., 65, 874, (1991)
[45] Bell, J.; Holmes, M., Model of the dynamics of receptor potential in a mechano-receptor, Math. biosci., 110, 139, (1992) · Zbl 0761.92011
[46] Toth, T.I.; Crunelli, V., Effects of tapering geometry and inhomogeneous ion channel distribution in a neuron model, Neurosci., 84, 1223, (1998)
[47] Magee, J.; Johnston, D., Characterization of single voltage-gated na^+ and ca2+ channels in apical dendrites of rat CA1 pyramidal neurons, J. physiol. (lond.), 487, 67, (1995)
[48] Sabah, N.H.; Leibovic, K.N., Subthreshold oscillatory responses of the hodgkin – huxley cable model for the squid gaint axon, Biophys. J., 9, 1206, (1969)
[49] Llinas, R.; Nicholson, C., Electrophysiological properties of dendrites and somata in alligator purkinje cells, J. neurophysiol., 34, 532, (1971)
[50] FitzHugh, R., Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber, Biophys. J., 2, 11, (1962)
[51] Hodgkin, A.L.; Huxley, A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. physiol. (lond.), 117, 500, (1952)
[52] MacGregor, R.J., A model for responses to activation by axodendritic synapses, Biophys. J., 8, 305, (1968)
[53] Madsen, E.L., Theory for a test of the electric cable model of myelinated axon and saltatory conduction, J. theoret. biol., 67, 203, (1977)
[54] Basser, P.J., Cable equation for a myelinated axon derived from its microstructure, Med. biol. eng. comput., 31, S87, (1993)
[55] Keizer, J.; Smith, G.D.; Ponce-Dawson, S.; Pearson, J.E., Saltatory propagation of ca^2+ waves by ca2+ sparks, Biophys. J., 75, 595, (1998)
[56] Bennett, M.R.; Gibson, W.G.; Poznanski, R.R., Extracellular current flow and potential during quantal transmission from varicosities in a smooth muscle syncytium, Philos. trans. R. soc., 342, 89, (1993)
[57] R.R. Poznanski, J. Bell, Math. Biosci., this issue, p. 123
[58] FitzHugh, R., Dimensional analysis of nerve models, J. theoret. biol., 40, 517, (1973)
[59] Poznanski, R.R., Membrane voltage changes in passive dendritic trees: a tapering equivalent cylinder model, IMA J. math. appl. med. biol., 5, 113, (1988) · Zbl 0651.92010
[60] Evans, J.D.; Kember, G.C., Analytical solutions to a tapering multicylinder somatic shunt cable model for passive neurones, Math. biosci., 149, 137, (1998) · Zbl 0943.92011
[61] Sabah, N.H.; Spangler, R.A., Repetitive response of the hodgkin – huxley model for the squid gaint axon, J. theoret. biol., 29, 155, (1970)
[62] Mauro, A.; Conti, F.; Dodge, F.; Schor, R., Subthreshold behavior and phenomenological impedance of the squid giant axon, J. gen. physiol., 55, 497, (1970)
[63] Schiller, J.; Major, G.; Koester, H.J.; Schiller, Y., NMDA spikes in basel dendrites of cortical pyramidal neurons, Nature, 404, 285, (2000)
[64] French, C.R.; Sah, P.; Buckett, K.J.; Gage, P.W., A voltage-dependent persistent sodium current in Mammalian hippocampal neurons, J. gen. physiol., 95, 1139, (1990)
[65] Hodgkin, A.L., The optimum density of sodium channels in an unmyelinated nerve, Philos. trans. R. soc. lond. B, 270, 297, (1975)
[66] Sigworth, F.J.; Neher, E., Single sodium channel currents observed in cultured rat muscle cells, Nature, 287, 497, (1980)
[67] Stuhmer, W.; Methfessel, B.; Sakmann, B.; Noda, M.; Numa, S., Patch clamp characterization of sodium channels expressed from rat brain cdna, Eur. biophys. J., 14, 131, (1987)
[68] Sabah, N.H.; Leibovic, K.N., The effect of membrane parameters on the properties of the nerve impulse, Biophys. J., 12, 1132, (1972)
[69] Hayashi, H.; Ishizuka, S., Chaotic nature of bursting discharge in the onchidium pacemaker neuron, J. theoret. biol., 156, 269, (1992)
[70] Gabel, L.A.; Nisenbaum, E.S., Biophysical characterization and functional consequences of a slowly inactivating potassium current in neostriatal neurons, J. neurophysiol., 79, 1989, (1998)
[71] Magee, J.C., Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramaidal neurons, J. neurosci., 18, 7613, (1998)
[72] H.C. Tuckwell, Instruction to Theoretical Neurobiology. Linear Cable Theory and Dendritic Structure, vol. 1, Cambridge University, Cambridge, 1988
[73] Durand, D., The somatic shunt cable model for neurons, Biophys. J., 46, 645, (1984)
[74] Jackson, M.B., Cable analysis with the whole-cell patch clamp: theory and experiment, Biophys. J., 61, 756, (1992)
[75] Evans, J.D.; Kember, G.C.; Major, G., Techniques for obtaining analytical solutions to the multicylinder somatic shunt cable model for passive neurones, Biophys. J., 63, 350, (1992)
[76] J.D. Evans, The multiple equivalent cylinder model, in: R.R. Poznanski (Ed.), Modeling in the Neurosciences: From Ionic Channels to Neural Networks, Harwood Academic Publishers, Amsterdam, 1999 (Chapter 5)
[77] Major, G.; Evans, J.D.; Jack, J.J.B., Solutions for transients in arbitrarily branching cables, Biophys. J., 65, 423, (1993)
[78] W. Pogorzelski, Integral Equations and Their Applications, vol. 1, Pergamon, Oxford, 1966 · Zbl 0137.30502
[79] Poznanski, R.R., Analysis of a postsynaptic scheme based on a tapering equivalent cable model, IMA J. math. appl. med. biol., 7, 175, (1990) · Zbl 0715.92004
[80] Hoffman, D.A.; Magee, J.C.; Colbert, C.M.; Johnston, D., K^+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons, Nature, 387, 869, (1997)
[81] Nicoll, A.; Larkman, A.; Blakemore, C., EPSPs in rat neocortical pyramidal neurones in vitro are prolonged by NMDA receptor-mediated currents, Neurosci. lett., 143, 5, (1992)
[82] Alzheimer, C.; Schwindt, P.C.; Crill, W.E., Model gating of na^+ channels as a mechanism of persistent na+ current in pyramidal neurons from rat and cat sensorimotor cortex, J. neurosci., 13, 660, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.