zbMATH — the first resource for mathematics

Branching dendrites with resonant membrane: a “sum-over-trips” approach. (English) Zbl 1122.92007
Summary: Dendrites form the major components of neurons. They are complex branching structures that receive and process thousands of synaptic inputs from other neurons. It is well known that dendritic morphology plays an important role in the function of dendrites. Another important contribution to the response characteristics of a single neuron comes from the intrinsic resonant properties of dendritic membranes. We combine the effects of dendritic branching and resonant membrane dynamics by generalising the “sum-over-trips” approach [L. F. Abbott et al. ibid. 66, 49–60 (1991; Zbl 0743.92010)]. To illustrate how this formalism can shed light on the role of the architecture and resonances in determining neuronal output we consider dual recording and reconstruction data from a rat CA1 hippocampal pyramidal cell. Specifically we explore the way in which an \(I_{h}\) current contributes to a voltage overshoot at the soma.

92C20 Neural biology
Full Text: DOI
[1] Abbott LF (1992) Simple diagrammatic rules for solving dendritic cable problems. Physica A 185:343–356 · doi:10.1016/0378-4371(92)90474-5
[2] Abbott LF, Fahri E, Gutmann S (1991) The path integral for dendritic trees. Biol Cybern 66:49–60 · Zbl 0743.92010 · doi:10.1007/BF00196452
[3] Butz EG, Cowan JD (1974) Transient potentials in dendritic systems of arbitrary geometry. Biophys J 14:661–689 · doi:10.1016/S0006-3495(74)85943-6
[4] Cao BJ, Abbott LF (1993) New computational method for cable theory problems. Biophys J 64:303–313 · doi:10.1016/S0006-3495(93)81370-5
[5] Carnevale NT, Hines ML (2006) The NEURON Book. Cambridge University Press, London
[6] Cox SJ, Griffith BE (2001) Recovering quasi-active properties of dendritic neurons from dual potential recordings. J Comput Neurosci 11:95–110 · Zbl 05967452 · doi:10.1023/A:1012858230117
[7] Cox SJ, Raol JH (2004) Recovering the passive properties of tapered dendrites from single and dual potential recordings. Math Biosci 190:9–37 · Zbl 1049.92007 · doi:10.1016/j.mbs.2004.02.007
[8] Evans JD, Kember GC, Major G (1992) Techniques for obtaining analytical solutions to the multi-cylinder somatic shunt cable model for passive neurons. Biophys J 63:350–365 · doi:10.1016/S0006-3495(92)81631-4
[9] Evans JD, Kember GC, Major G (1995) Techniques for the application of the analytical solutions to the multi-cylinder somatic shunt cable model for passive neurons. Math Biosci 125:1–50 · Zbl 0819.92003 · doi:10.1016/0025-5564(94)00018-U
[10] Häusser M (2001) Dendritic democracy. Curr Biol 11:R10–R12 · doi:10.1016/S0960-9822(00)00034-8
[11] Hudspeth AJ, Lewis RS (1988) A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana Catesbeiana. J Physiol 400:275–297
[12] Hutcheon B, Miura RM, Puil E (1996) Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76: 698–714
[13] Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222 · doi:10.1016/S0166-2236(00)01547-2
[14] Johnson D, Magee JC, Colbert CM, Christie BR (1996) Active properties of neuronl dendrites. Ann Rev Neurosci 19:165–186 · doi:10.1146/annurev.ne.19.030196.001121
[15] Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol Cybern 50:15–33 · doi:10.1007/BF00317936
[16] Koch C, Poggio T (1985) A simple algorithm for solving the cable equation in dendritic geometries of arbitrary geometry. J Neurosci Methods 12:303–315 · Zbl 0587.65085 · doi:10.1016/0165-0270(85)90015-9
[17] Kole MHP, Hallermann S, Stuart GJ (2006) Single I h channels in pyramidal neuron dendrites: Properties, distribution, and impact on action potential output. J Neurosci 26(6):1677–1687 · doi:10.1523/JNEUROSCI.3664-05.2006
[18] Li X, Ascoli GA (2006) Computational simulation of the input–output relationship in hippocampal pyramidal cells. J Comput Neurosci 21:191–209 · Zbl 1098.92014 · doi:10.1007/s10827-006-8797-z
[19] London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532 · doi:10.1146/annurev.neuro.28.061604.135703
[20] London M, Meunier C, Segev I (1999) Signal transfer in passive dendrites with nonuniform membrane conductance. J Neurosci 19:8219–8233
[21] Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613–7624
[22] Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366 · doi:10.1038/382363a0
[23] Mauro A, Conti F, Dodge F, Schor R (1970) Subthreshold behavior and phenomenological impedance of the squid giant axon. J Gen Physiol 55:497–523 · doi:10.1085/jgp.55.4.497
[24] Migliore M, Ferrante M, Ascoli GA (2005) Signal propagation in oblique dendrites of CA1 pyramidal cells. J Neurophysiol 94:4145–4155 · doi:10.1152/jn.00521.2005
[25] van Ooyen A, Duijnhouwer J, Remme MWH, van Pelt J (2002) The effect of dendritic topology on firing patterns in model neurons. Network 13:311–325 · doi:10.1088/0954-898X/13/3/304
[26] Pape HC (1996) Queer current and pacemaker: the hyperpolarization activated cation current in neurons. Annu Rev Physiol 58:299–327 · doi:10.1146/annurev.ph.58.030196.001503
[27] Scott A (2002) Neuroscience: a mathematical primer. Springer, Heidelberg · Zbl 1018.92003
[28] Segev I, London M (2000) Untangling dendrites with quantitative models. Science 290:744–750 · doi:10.1126/science.290.5492.744
[29] Segev I, Rinzel J, Shepherd GM (eds) (1995) The theoretical foundations of dendritic function: selected papers of Wilfrid Rall with commentaries. MIT Press, Cambridge
[30] Stuart G, Spruston N, Häusser M. (eds.) (1999) Dendrites. Oxford University Press, New York
[31] Timofeeva Y, Lord GJ, Coombes S (2006) Dendritic cable with active spines: a modeling study in the spike-diffuse spike framework. Neurocomputing 69:1058–1061 · Zbl 05184605 · doi:10.1016/j.neucom.2005.12.045
[32] Timofeeva Y, Lord GJ, Coombes S (2006) Spatio-temporal filtering properties of a dendritic cable with active spines. J Comput Neurosci 21:293–306 · Zbl 05075489 · doi:10.1007/s10827-006-8776-4
[33] Tuckwell HC (1988) Introduction to theoretical neurobiology, vol 1. Cambridge University Press, London · Zbl 0647.92009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.