×

zbMATH — the first resource for mathematics

Analytical solutions to a tapering multicylinder somatic shunt cable model for passive neurones. (English) Zbl 0943.92011
Summary: A multicylinder somatic shunt cable model for passive neurons is considered in which one or more tapering equivalent cylinders emanate from a uniformly polarized soma. Each tapering equivalent cylinder approximates the loss of dendritic trunk parameter in the one or more dendritic trees that it represents, relaxing certain symmetry conditions necessary for the Rall equivalent cylinder concept and in particular allowing terminal branches to end at different electrotonic lengths. The case of exponential taper is considered in detail following the anatomical data on apical and basilar dendrites of CA1 and CA3 hippocampal pyramidal neurons obtained by D. A. Turner and P. A. Schwartzkroin [J. Neurophysiol. 44, 184 (1980); J. Neurosci. 3, 2381 (1983)].

MSC:
92C20 Neural biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
78A70 Biological applications of optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Turner, D.A.; Schwartzkroin, P.A., Steady-state electrotonic analysis of intracellularly stained hippocampal neurons, J. neurophysiol., 44, 184, (1980)
[2] Turner, D.A.; Schwartzkroin, P.A., Electrical characteristics of dendrites and dendritic spines in intracellularly stained CA3 and dentate hippocampal neurons, J. neurophysici., 3, 2381, (1983)
[3] Rall, W., Branching dendritic trees and motoneuron membrane resistivity, Exptl. neurol., 1, 491, (1959)
[4] Rall, W., Membrane potential transients and membrane time constant of motoneurons, Exptl. neurol., 2, 503, (1960)
[5] Rall, W., Electrophysiology of a dendritic neuron model, Biophys. J. (supplement), 2, 145, (1962)
[6] Rall, W., Theory of physiological properties of dendrites, Ann. N.Y. acad. sci., 96, 1071, (1962)
[7] J.J.B. Jack, D. Noble, R.W. Tsien, Electric current flow in excitable cells, Clarendon, Oxford, 1975, p. 518
[8] W. Rall, Core conductor theory and cable properties of neurons, in: E.R. Kandel (Ed.), Handbook of Physiology. Section 1. The Nervous System, vol. 1, Am. Physiol. Soc., Bethesda, MD, 1977, p. 39
[9] W. Rall, Cable theory for dendritic neurons, in: C. Koch, I. Segev (Eds.), Methods in Neuronal Modeling: From Synapses to Networks, MIT, Cambridge, MA, 1989, p. 9
[10] Evans, J.D.; Kember, G.C.; Major, G., Techniques for obtaining analytical solutions to the multicylinder somatic shunt cable model for passive neurones, Biophys. J., 63, 350, (1992)
[11] Evans, J.D.; Kember, G.C.; Major, G., Techniques for the application of the analytical solutions to the multicylinder somatic shunt cable model for passive neurones, Math. biosci., 125, 1, (1995) · Zbl 0819.92003
[12] H.C. Tuckwell, Introduction to Theoretical Neurobiology, vol. 1, Linear Cable Theory and Dendritic Structure, Cambridge University, Cambridge, MA, 1988, p. 291
[13] W. Rall, Theoretical significance of dendritic trees for neuronal input-output relations, in: R. Reiss (Ed.), Neural theory and modeling, Stanford University, 1964, p. 73
[14] W. Rall, Cable properties of dendrites and effects of synaptic location, in: P. Andersen, J.K.S. Jansen (Eds.), Excitatory Synaptic Mechanisms, Oslo Universitetsforlag, 1970, p. 175
[15] Barrett, J.N.; Crill, W.E., Specific membrane resistivity of Dye-injected cat motoneurons, Brain res., 28, 556, (1971)
[16] Poznanski, R.R., Membrane voltage changes in passive dendritic trees: A tapering equivalent cylinder model, IMA J. math. appl. med. biol., 5, 113, (1988) · Zbl 0651.92010
[17] Poznanski, R.R., A generalized tapering equivalent cable model for dendritic neurons, Bull. math. biol., 53, 3, 457, (1991) · Zbl 0725.92007
[18] Poznanski, R.R., Modelling the electrotonic structure of starburst amacrine cells in the rabbit retina: A functional interpretation of dendritic morphology, Bull. math. biol., 54, 6, 905, (1992) · Zbl 0754.92007
[19] Poznanski, R.R., Electrotonic length estimates of CA3 hippocampal pyramidal neurons, Neurosci. res. comm., 14, 2, 93, (1994)
[20] Poznanski, R.R., Transient response in a tapering cable model with somatic shunt, Neuroreport, 7, 1700, (1996)
[21] Poznanski, R.R.; Glenn, L.L., Estimating the effective electrotonic length of dendritic neurons with reduced equivalent cable models, Neurosci. res. comm., 15, 1, 69, (1994)
[22] Goldstein, S.S.; Rall, W., Changes of action potential shape and velocity for changing core conductor geometry, Biophys. J., 14, 731, (1974)
[23] Strain, G.M.; Brockman, W.H., A modified cable model for neuron processes with non-constant diameters, J. theor. biol., 51, 475, (1975)
[24] Kelly, J.J.; Ghausi, M.S., Tapered distributed RC networks with similar immittances, IEEE trans. circuit theory, 12, 4, 554, (1965)
[25] Holmes, W.R.; Rall, W., Electrotonic length estimates in neurons with dendritic tapering or somatic shunt, J. neurophysiol, 68, 1421, (1992)
[26] Evans, J.D.; Kember, G.C., Analytical solutions to the multicylinder somatic shunt cable model for passive neurones with differing dendritic electrical parameters, Biol. cybern., 71, 547, (1994) · Zbl 0807.92005
[27] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965, p. 1045 · Zbl 0171.38503
[28] Carnevale, N.T.; Johnston, D., Electrophysiological characterization of remote chemical synapses, J. neurophysiol., 47, 4, 606, (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.