×

Stochastic aspects of asymmetric autocatalysis and absolute asymmetric synthesis. (English) Zbl 1196.92065

Summary: The main goal of the present review is to collect in a unified framework the deterministic and stochastic models of emergence and amplification of chirality by mechanisms such as asymmetric autocatalysis and absolute asymmetric synthesis. Empirical approaches and modeling have recently provided a good insight into these phenomena. Our groups in Italy and Hungary have a wide variety of expertise both in fields of experiments and modeling. In the last decade important results have been achieved, however, more experiments and more detailed deterministic and stochastic models are needed for a better understanding of details and significance of asymmetric autocatalysis and absolute asymmetric synthesis.

MSC:

92E20 Classical flows, reactions, etc. in chemistry
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
37N99 Applications of dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A bibliography for stochastic systems biology. http://biowiki.org/StochasticBiology
[2] Abstracts and talk materials: stochastic models for intracellular reaction networks May 11–13, 2008, University of Minnesota. http://www.ima.umn.edu/2007-2008/SW5.11-13.08/abstracts.html
[3] D. F. Anderson, G. Craciun and T.G. Kurtz, Bull. Math. Biol. (2010, epub ahead of print)
[4] Arányi P., Tóth J.: Acta Biochim. Biophys. Acad. Sci. Hung. 12, 375 (1977)
[5] Asakura K., Kondepudi D.K., Martin R.: Chirality 10, 343 (1998) · doi:10.1002/(SICI)1520-636X(1998)10:4<343::AID-CHIR9>3.0.CO;2-8
[6] Asakura K., Ikumo A., Kurihara K., Osanai S., Kondepudi D.K.: J. Phys. Chem. A 104, 2689 (2000) · doi:10.1021/jp9936796
[7] Asakura K., Osanai S., Kondepudi D.K.: Chirality 13, 435 (2001) · doi:10.1002/chir.1058
[8] Bada J.L.: Nature 374, 594 (1995) · doi:10.1038/374594a0
[9] Barabás B., Caglioti L., Faglioni F., Florini N., Lazzeretti P., Maioli M., Micskei K., Rábai G., Taddei F., Zucchi C., Pályi G.: Amer. Inst. Phys. Proc. 963, 1150 (2008)
[10] Barabás B., Caglioti L., Micskei K., Pályi G.: Bull. Chem. Soc. Japan 82, 1372 (2009) · doi:10.1246/bcsj.82.1372
[11] Barabás B., Caglioti L., Zucchi C., Maioli M., Gál E., Micskei K., Pályi G.: J. Phys. Chem. B 111, 11506 (2007) · doi:10.1021/jp072945+
[12] Barabás B., Micskei K., Zucchi C., Pályi G.: Orig. Life Evol. Biosph. 38, 317 (2008) · doi:10.1007/s11084-008-9138-1
[13] Barak S., Doron L.: Orig. Life Evol. Biosph. 34, 181 (2004) · doi:10.1023/B:ORIG.0000009839.53483.42
[14] Baras F., Malek-Mansour M., Pearson J.E.: J. Chem. Phys. 105, 8257 (1996) · doi:10.1063/1.472679
[15] Bazsa G., Beck M.T.: Acta Chim. Acad. Sci. Hung. 73, 425 (1972)
[16] W. Bialek, arXiv:cond-mat/0005235v1 [cond-mat.soft] 2000, pp. 1–10
[17] Blackmond D.G.: Proc. Natl. Acad. Sci. USA 101, 5732 (2004) · doi:10.1073/pnas.0308363101
[18] Blackmond D.G.: Tetrahedron: Asymmetry 17, 584 (2006) · doi:10.1016/j.tetasy.2006.01.012
[19] Borgis D., Moreau M.: Physica A 123, 109 (1984) · Zbl 0598.60090 · doi:10.1016/0378-4371(84)90106-7
[20] Caglioti L., Zucchi C., Pályi G.: Chem. Today 23, 38 (2005)
[21] Caglioti L., Hajdu C., Holczknecht O., Zékány L., Zucchi C., Micskei K., Pályi G.: Viva Origino 34, 62 (2006)
[22] Caglioti L., Holczknecht O., Fujii N., Zucchi C., Pályi G.: Orig. Life Evol. Biosph. 36, 459 (2006) · doi:10.1007/s11084-006-9036-3
[23] Caglioti L., Micskei K., Pályi G.: Viva Origino 35, 82 (2007)
[24] Caglioti L., Barabás B., Faglioni F., Florini N., Lazzeretti P., Maioli M., Micskei K., Rábai G., Taddei F., Zucchi C., Pályi G.: Chimica Oggi/CHEM. TODAY 26, 24 (2008)
[25] L. Caglioti, K. Micskei, G. Pályi: Chirality (2009, in press)
[26] X. Cai, Z. Xu, J. Chem. Phys. 126 (2007) 074102 (10 pages)
[27] Calvin M.: Molecular evolution. OUP, Oxford (1969)
[28] T. Carletti, D. Fanelli, Europhys. Lett. 77, 18005 (2007) (6 pages)
[29] Castillo-Garit J.A., Marrero-Ponce Y., Torrens F., Rotondo R.: J. Mol. Graph. Model. 26, 32 (2007) · doi:10.1016/j.jmgm.2006.09.007
[30] Chen X., Ling A.: Chin. Phys. Lett. 24, 2509 (2007) · doi:10.1088/0256-307X/24/9/013
[31] P. Csermely, Weak links: stabilizers of complex systems from proteins to social networks? THE FRONTIERS COLLECTION, Series Editors: D. Dragoman, M. Dragoman, A.C. Elitzur, M.R. Silverman, J. Tuszynski, H.D. Zeh, (Springer, 2006)
[32] Csikja R., Tóth J.: Enformatika. Int. J. Appl. Math. Comput. Sci. 4, 728 (2007)
[33] Delbrück M.: J. Chem. Phys. 8, 120 (1940) · doi:10.1063/1.1750549
[34] Eggenberger F., Pólya G.: Zeit. Angew. Math. Mech. 3, 279 (1923) · JFM 49.0382.01 · doi:10.1002/zamm.19230030407
[35] Eigen M., Schuster P.: The hypercycle: a principle of natural self-organization. Springer, Berlin, Heidelberg, New York (1979)
[36] Engel M.H., Nagy B.: Nature 296, 837 (1982) · doi:10.1038/296837a0
[37] English B.P., Min W., Oijen A.M., Lee K.T., Luo G., Sun H., Cherayil B.J., Kou S.C., Xie X.S.: Nat. Chem. Biol. 2, 87 (2006) · doi:10.1038/nchembio759
[38] Érdi P., Sipos T., Tóth J.: Magyar Kém. Folyóirat 79, 97 (1973)
[39] Érdi P., Tóth J.: Mathematical models of chemical reactions. Theory and applications of deterministic and stochastic models. Princeton University Press, Princeton (1989) · Zbl 0696.92027
[40] P. Érdi, J. Tóth, V. Hárs, in Colloquia Mathematica Societatis János Bolyai, (Szeged, Hungary, 1979) Qualitative theory of differential equations, ed. by M. Farkas (North-Holland and János Bolyai Mathematical Society: Budapest, 1981), Vol. 30, pp. 205
[41] Feher G., Weissman M.: Proc. Natl. Acad. Sci. USA 70, 870 (1973) · doi:10.1073/pnas.70.3.870
[42] Frank F.C.: Biochim. Biophys. Acta 11, 459 (1953) · doi:10.1016/0006-3002(53)90082-1
[43] Frankowicz M., Malek-Mansour M., Nicolis G.: Physica 125, 237 (1984) · doi:10.1016/0378-4371(84)90011-6
[44] Frankowicz M., Kawczyński A.L.: Pol. J. Chem. 71, 467 (1997)
[45] Gadgil Ch., Lee Ch.H., Othmer H.G.: Bull. Math. Biol. 67, 901 (2005) · Zbl 1334.92473 · doi:10.1016/j.bulm.2004.09.009
[46] B. Gaveau, M. Moreau, J. Tóth, in Variational and extremum principles in macroscopic systems, Chap. 15, eds. by S. Sieniutycz, H. Farkas, (Elsevier, 2005), p. 315
[47] Gánti T.: The principles of life. Oxford University Press, Oxford (2003)
[48] D.T. Gillespie, S. Lampoudi, L.R. Petzold, J. Chem. Phys. 126, 034302 (2007) (9 pages)
[49] Goss P.J.E., Peccoud J.: Proc. Natl. Acad. Sci. USA 95, 6750 (1998) · doi:10.1073/pnas.95.12.6750
[50] Goutsias J.: Biophys. J. 92, 2350 (2007) · doi:10.1529/biophysj.106.093781
[51] Gridnev I.D., Serafimov J.M., Quiney H., Brown J.M.: Org. Biomol. Chem. 1, 3811 (2003) · doi:10.1039/b307382n
[52] Guldberg C.M., Waage P.: Études sur les affinités chimiques. Brøgger & Christei, Christiania (1867)
[53] Gutman I., Todorović D., Vućković M.: Chem. Phys. Lett. 216, 447 (1993) · doi:10.1016/0009-2614(93)90125-K
[54] Hanusse P.: Compt. Rend. 277, 93 (1973)
[55] Hellander A., Loetstedt P.: J. Comp. Phys. 227, 100 (2007) · Zbl 1126.80010 · doi:10.1016/j.jcp.2007.07.020
[56] Hochberg D., Zorzano M.-P.: Chem. Phys. Lett. 431, 185 (2006) · doi:10.1016/j.cplett.2006.09.059
[57] Hochstim A.R.: Orig. Life Evol. Biosph. 6, 317 (1975) · doi:10.1007/BF01130337
[58] Á. Horváth, Multimodality of discrete distributions with applications, (MSc thesis), ELTE TTK, Budapest, 1985 (in Hungarian)
[59] Hou Z., Xin H.: Huaxue Jinzhan 18, 142 (2007)
[60] Iosifescu M., Tăutu P.: Stochastic processes and applications in biology and medicine, Vol. 1.: Theory, Vol. 2: Models. Springer, Editura Academiei, Berlin, Heidelberg, New York and Bucure sti (1973)
[61] Jia Y., Li J.-R.: Phys. Rev. E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics) 53, 5764 (1996)
[62] K. Kaneko, Phys. Rev. E 68, 031909 (2003) (5 pages)
[63] Kawasaki T., Harada Y., Suzuki K., Tobita T., Florini N., Pályi G., Soai K.: Org. Lett. 10, 4085 (2008) · doi:10.1021/ol801600y
[64] Kawasaki T., Shimizu M., Nishiyama D., Ito M., Ozawa H., Soai K.: Chem. Commun. 29, 4396 (2009) · doi:10.1039/b908754k
[65] Kawasaki T., Matsumura Y., Tsutsumi T., Suzuki K., Ito M., Soai K.: Science 324, 492 (2009) · doi:10.1126/science.1170322
[66] Keszthelyi L.: Orig. Life Evol. Biosph. 14, 375 (1984) · doi:10.1007/BF00933680
[67] Keszthelyi L.: Quart. Rev. Biophys. 28, 473 (1995) · doi:10.1017/S0033583500003309
[68] Keszthelyi L.: Orig. Life Evol. Biosph. 31, 249 (2001) · doi:10.1023/A:1010758205545
[69] Szabó-Nagy A., Keszthelyi L.: Proc. Natl. Acad. Sci. USA 96, 4252 (1999) · doi:10.1073/pnas.96.8.4252
[70] Kondepudi D.K., Culha M.: Chirality 10, 238 (1998) · doi:10.1002/(SICI)1520-636X(1998)10:3<238::AID-CHIR6>3.0.CO;2-5
[71] Kondepudi D.K., Nelson G.W.: Phys. Rev. Lett. 50, 1023 (1983) · doi:10.1103/PhysRevLett.50.1023
[72] Kondepudi D.K., Nelson G.W.: Nature 314, 438 (1985) · doi:10.1038/314438a0
[73] Kondepudi D.K., Asakura K.: Acc. Chem. Res. 34, 946 (2001) · doi:10.1021/ar010089t
[74] Kou S.C., Cherayil B.J., Min W., English B.P., Xie X.S.: J. Phys. Chem. B 109, 19068 (2005) · doi:10.1021/jp051490q
[75] Kramers H.A.: Physica 7, 284 (1940) · Zbl 0061.46405 · doi:10.1016/S0031-8914(40)90098-2
[76] Kurtz T.G.: J. Chem. Phys. 57, 2976 (1972) · doi:10.1063/1.1678692
[77] Kvenvolden K.A., Lawless J., Pering K., Peterson E., Flores J., Ponnamperuma C., Kaplan I.R., Moore C.: Nature 228, 923 (1970) · doi:10.1038/228923a0
[78] Laurenzi I.J.: J. Chem. Phys. 113, 3315 (2000) · doi:10.1063/1.1287273
[79] Le Guennec P.: J. Math. Chem. 23, 429 (1998) · Zbl 0917.92032 · doi:10.1023/A:1019197930712
[80] Lente G.: J. Phys. Chem. A 108, 9475 (2004) · doi:10.1021/jp046413u
[81] Lente G.: J. Phys. Chem. A 109, 11058 (2005) · doi:10.1021/jp054613f
[82] Lente G.: J. Phys. Chem. A 110, 12711 (2006) · doi:10.1021/jp0658344
[83] Lente G.: Phys. Chem. Chem. Phys. 9, 6134 (2007) · doi:10.1039/b711546f
[84] Lente G.: React. Kinet. Catal. Lett. 95, 13 (2008) · doi:10.1007/s11144-008-5366-7
[85] Lente G., Ditrói T.: J. Phys. Chem. B 113, 7237 (2009) · doi:10.1021/jp900276h
[86] Lindblad P., Degn H.: Acta Chim. Scand. 21, 791 (1967) · doi:10.3891/acta.chem.scand.21-0791
[87] Maioli M., Micskei K., Zucchi C., Caglioti L., Pályi G.: J. Math. Chem. 43, 1505 (2008) · Zbl 1217.92101 · doi:10.1007/s10910-007-9277-z
[88] Marion G., Mao X., Renshaw E., Liu J.: Phys. Rev. E 66, 051915 (2002) · doi:10.1103/PhysRevE.66.051915
[89] Markó L.: Diss. Savariensis 24, 1 (1998)
[90] Martinek T.A., Varga T., Balázsik K., Szöllosi G., Fülöp F., Bartók M.: J. Catal. 255, 296 (1998) · doi:10.1016/j.jcat.2008.02.020
[91] Mason S.F.: Nature 311, 19 (1984) · doi:10.1038/311019a0
[92] Matsuura T., Koshima H.: J. Photochem. Photobiol. C: Photochem. Rev. 6, 7 (2005) · doi:10.1016/j.jphotochemrev.2005.02.002
[93] Medgyessy P.: Decomposition of superpositions of distribution functions. Publishing House of the Hungarian Academy of Sciences, Budapest (1961) · Zbl 0094.32801
[94] Mezey P.: A global approach to molecular chirality. In: Mezey, P. (eds) New developments in molecular chirality, pp. 257. Kluver, Dordrecht (1991)
[95] Mezey, P. (eds): New developments in molecular chirality. Kluver, Dordrecht (1991)
[96] Michaelis L., Menten M.L.: Biochem. Z. 49, 333–369 (1913)
[97] Micskei K., Maioli M., Zucchi C., Caglioti L., Pályi G.: Tetrahedron: Asymmetry 17, 2960 (2006) · doi:10.1016/j.tetasy.2006.11.016
[98] Micskei K., Póta G., Caglioti L., Pályi G.: J. Phys. Chem. A 110, 5982 (2006) · doi:10.1021/jp0614502
[99] Micskei K., Rábai G., Gál E., Caglioti L., Pályi G.: J. Phys. Chem. B 112, 9196 (2008) · doi:10.1021/jp803334b
[100] Mills W.H.: J. Soc. Chem. Ind. 51, 750 (1932) · doi:10.1002/jctb.5000513702
[101] Nagypál I., Epstein I.R.: J. Phys. Chem. 90, 6285 (1986) · doi:10.1021/j100281a044
[102] Nagypál I., Epstein I.R.: J. Chem. Phys. 80, 6925 (1988) · doi:10.1063/1.455316
[103] Ornstein G.E., Uhlenbeck L.S.: Phys. Rev. 36, 823 (1930) · doi:10.1103/PhysRev.36.679
[104] Országh I., Beck M.T.: Magyar Kém. Folyóirat 86, 248 (1980)
[105] Pasteur L.: Compt. Rend. 26, 535 (1848)
[106] L. Pál, Arxiv preprint cond-mat/0407106, (2004)
[107] Pályi, G., Zucchi, C., Caglioti, L. (eds): Advances in bioChirality. Elsevier, Amsterdam (1999)
[108] Pályi, G., Zucchi, C., Caglioti, L. (eds): Progress in biological chirality. Elsevier, Oxford (GB) (2004)
[109] Pályi G., Micskei K., Zékány L., Zucchi C., Caglioti L.: Magy. Kém. Lapja 60, 17 (2005)
[110] Pearson K.: Proc. Roy. Soc. (Lond) 60, 489 (1897) · JFM 28.0209.02 · doi:10.1098/rspl.1896.0076
[111] X. Peng, W. Zhou, Y. Wang, J. Chem. Phys. 126, 224109 (2007) (9 pages)
[112] Pineda M., Imbihl R., Schimansky-Geier L., Zülicke Ch.: J. Chem. Phys. 124, 044701 (2006) · doi:10.1063/1.2140709
[113] Pizzarello S., Hang Y., Becker L., Poreda R.J., Nieman R.A., Cooper G., Williams M.: Science 293, 2236 (2001) · doi:10.1126/science.1062614
[114] Plasson R., Bersini H., Commeyras A.: Proc. Natl. Acad. Sci. USA 101, 16733 (2004) · doi:10.1073/pnas.0405293101
[115] Pólya G.: Math. Ann. 84, 149 (1921) · JFM 48.0603.01 · doi:10.1007/BF01458701
[116] Póta G., Stedman G.: ACH-Models Chem. 131, 229 (1994)
[117] Qian H.: Biophys. Chem. 105, 585 (2003) · doi:10.1016/S0301-4622(03)00068-1
[118] Qian H., Elson E.L.: Biophys. Chem. 101–102, 565 (2002) · doi:10.1016/S0301-4622(02)00145-X
[119] Qian H., Saffarian S., Elson E.L.: Proc. Natl. Acad. Sci. USA 99, 10376 (2002) · Zbl 1019.92045 · doi:10.1073/pnas.152007599
[120] Reddy V.T.N.: J. Statist. Phys. 13, 61 (1975) · doi:10.1007/BF01012599
[121] Renyi A.: MTA Alk. Mat. Int. Közl. 2, 83–101 (1953)
[122] Saito Y., Sugimori T., Hyuga H.: J. Phys. Soc. Jpn. 76, 044802 (2007) · doi:10.1143/JPSJ.76.044802
[123] Samoilov M., Plyasunov S., Arkin A.P.: Proc. Natl. Acad. Sci. USA 102, 2310 (2005) · doi:10.1073/pnas.0406841102
[124] Sato I., Omiya D., Tsukiyama K., Ogi Y., Soai K.: Tetrahedron: Asymmetry 12, 1965 (2001) · doi:10.1016/S0957-4166(01)00351-2
[125] Sato I., Omiya D., Igarashi H., Kato K., Ogi Y., Tsukiyama K., Soai K.: Tetrahedron: Asymmetry 14, 975 (2003) · doi:10.1016/S0957-4166(03)00164-2
[126] Schaad L.J.: J. Amer. Chem. Soc. 85, 3588 (1963) · doi:10.1021/ja00905a012
[127] Schnell S., Chappell M.J., Evans N.D., Roussel M.R.: Compt. Rend. Biol. 329, 51 (2006) · doi:10.1016/j.crvi.2005.09.005
[128] Schnell S., Maini K.: Math. Comput. Model. 35, 137 (2002) · Zbl 0994.92024 · doi:10.1016/S0895-7177(01)00156-X
[129] El-Fayyoumi Shaimaa, M.H. Todd, Abstracts of papers, 232nd National Meeting, San Francisco, United States, Sept. 10–14, 2006
[130] Shao J., Liu L.: J. Phys. Chem. A 111, 9570 (2007) · doi:10.1021/jp0739364
[131] Shibata T.: World Sci. Lect. Notes Complex Syst. 3, 203 (2005) · doi:10.1142/9789812703248_0008
[132] Sipos T., Tóth J., Érdi P.: React. Kinet. Catal. Lett. 1, 113 (1974) · doi:10.1007/BF02075130
[133] Soai K., Shibata T., Morioka H., Choji K.: Nature 378, 767 (1995) · doi:10.1038/378767a0
[134] Soai K., Shibata T., Sato I.: Acc. Chem. Res. 33, 382 (2000) · doi:10.1021/ar9900820
[135] Soai K., Sato I., Shibata T.: Chem. Record 1, 321 (2001) · doi:10.1002/tcr.1017
[136] Soai K.: Viva Origino 30, 186 (2002)
[137] Soai K., Sato I., Shibata T., Komiya S., Hayashi M., Matsueda Y., Imamura H., Hayase T., Morioka H., Tabira H., Yamamoto Y., Kowata Y.: Tetrahedron: Asymmetry 14, 185 (2003) · doi:10.1016/S0957-4166(02)00791-7
[138] Soai K., Shibata T., Sato I.: Bull. Chem. Soc. Jpn. 77, 1063 (2004) · doi:10.1246/bcsj.77.1063
[139] K. Soai, T. Kawasaki, ed. by K. Mikami, L. Lautens New frontiers in asymmetric catalysis (Wiley, Hoboken, 2007), p. 259
[140] Soai K., Kawasaki T.: Top. Curr. Chem. 284, 1 (2008) · doi:10.1007/128_2007_138
[141] K. Soai, T. Kawasaki, in Organometallic Chirality, eds. by G. Pályi, C. Zucchi, L. Caglioti (Accad. Nazl. Sci. Lett. Arti - Mucchi Editore, Modena, 2008), p. 107
[142] Soai K., Kawasaki T.: Chem. Today 27(6, Supplement), 3 (2009)
[143] Stéfanini M.O., McKane A.J., Newman T.J.: Nonlinearity 18, 1575 (2005) · Zbl 1070.92022 · doi:10.1088/0951-7715/18/4/008
[144] Todorović D., Gutman I., Radulović M.: Chem. Phys. Lett. 372, 464 (2003) · doi:10.1016/S0009-2614(03)00449-4
[145] Togashi Y., Kaneko K.: Phys. Rev. Lett. 86, 2459 (2001) · doi:10.1103/PhysRevLett.86.2459
[146] Togashi Y., Kaneko K.: J. Phys. Soc. Jpn. 72, 62 (2003) · doi:10.1143/JPSJ.72.62
[147] Togashi Y., Kaneko K.: Phys. Rev. E 70, 020901 (2004) · doi:10.1103/PhysRevE.70.020901
[148] Togashi Y., Kaneko K.: Physica D 205, 87 (2005) · Zbl 1089.35546 · doi:10.1016/j.physd.2004.12.008
[149] Tóth J.: React. Kinet. Catal. Lett. 18, 169 (1981) · doi:10.1007/BF02065158
[150] Tóth J.: J. Math. Chem. 25, 393 (1999) · Zbl 0951.92036 · doi:10.1023/A:1019157105639
[151] Tóth J., Török T.L.: React. Kinet. Catal. Lett. 13, 167 (1980) · doi:10.1007/BF02074190
[152] Tranter G.E.: Nature 318, 172 (1985) · doi:10.1038/318172a0
[153] Turner T.E., Schnell S., Burrage K.: Comput. Biol. Chem. 28, 165 (2004) · Zbl 1087.92035 · doi:10.1016/j.compbiolchem.2004.05.001
[154] Van Hessem D.: J. Proc. Control. 2006, 225 (2006)
[155] H. Wagner, M. Moller, K. Prank, J. Chem. Phys. 125, 174104 (2006) (11 pages)
[156] H.-Y. Wang, H. Qian, J. Math. Phys. 48, 013303 (2007) (15 pages)
[157] E. Weinan, D. Liu, E. Vanden-Eijnden, J. Chem. Phys. 126, 137102 (2007) (3 pages)
[158] Wilhelmy L.: Poggendorff’s Ann. Phys. Chem. 81, 413 (1850) · doi:10.1002/andp.18501571106
[159] Zheng Q., Ross J.: J. Chem. Phys. 94, 3644 (1991) · doi:10.1063/1.459735
[160] Xie X.S., Trautman J.K.: Ann. Rev. Phys. Chem. 49, 441 (1998) · doi:10.1146/annurev.physchem.49.1.441
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.