zbMATH — the first resource for mathematics

Extremal black hole scattering at \(\mathcal{O} (G^3)\): graviton dominance, eikonal exponentiation, and differential equations. (English) Zbl 1456.83117
Summary: We use \(\mathcal{N} = 8\) supergravity as a toy model for understanding the dynamics of black hole binary systems via the scattering amplitudes approach. We compute the conservative part of the classical scattering angle of two extremal (half-BPS) black holes with minimal charge misalignment at \(\mathcal{O} (G^3)\) using the eikonal approximation and effective field theory, finding agreement between both methods. We construct the massive loop integrands by Kaluza-Klein reduction of the known \(D\)-dimensional massless integrands. To carry out integration we formulate a novel method for calculating the post-Minkowskian expansion with exact velocity dependence, by solving velocity differential equations for the Feynman integrals subject to modified boundary conditions that isolate conservative contributions from the potential region. Motivated by a recent result for universality in massless scattering, we compare the scattering angle to the result found by Z. Bern et al. [J. High Energy Phys. 2019, No. 10, Paper No. 206, 135 p. (2019; Zbl 1427.83035)] in Einstein gravity and find that they coincide in the high-energy limit, suggesting graviton dominance at this order.

83E50 Supergravity
83E15 Kaluza-Klein and other higher-dimensional theories
83C57 Black holes
83C10 Equations of motion in general relativity and gravitational theory
81U05 \(2\)-body potential quantum scattering theory
Fuchsia; epsilon
Full Text: DOI arXiv
[1] LIGO Scientific, Virgo collaboration, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
[2] LIGO Scientific, Virgo collaboration, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
[3] Bertotti, B., On gravitational motion, Nuovo Cim., 4, 898 (1956) · Zbl 0071.22105
[4] Kerr, RP, The Lorentz-covariant approximation method in general relativity I, Nuovo Cim., 13, 469 (1959) · Zbl 0088.20604
[5] Bertotti, B.; Plebanski, J., Theory of gravitational perturbations in the fast motion approximation, Ann. Phys., 11, 169 (1960) · Zbl 0094.23102
[6] Portilla, M., Momentum and angular momentum of two gravitating particles, J. Phys. A, 12, 1075 (1979)
[7] Westpfahl, K.; Goller, M., Gravitational scattering of two relativistic particles in postlinear approximation, Lett. Nuovo Cim., 26, 573 (1979)
[8] Portilla, M., Scattering of two gravitating particles: classical approach, J. Phys. A, 13, 3677 (1980)
[9] Bel, L.; Damour, T.; Deruelle, N.; Ibáñez, J.; Martin, J., Poincaré-invariant gravitational field and equations of motion of two pointlike objects: The postlinear approximation of general relativity, Gen. Rel. Grav., 13, 963 (1981)
[10] Westpfahl, K., High-speed scattering of charged and uncharged particles in general relativity, Prog. Phys., 33, 417 (1985)
[11] Ledvinka, T.; Schaefer, G.; Bicak, J., Relativistic closed-form Hamiltonian for many-body gravitating systems in the post-Minkowskian approximation, Phys. Rev. Lett., 100, 251101 (2008) · Zbl 1228.83020
[12] Bjerrum-Bohr, NEJ; Donoghue, JF; Vanhove, P., On-shell techniques and universal results in quantum gravity, JHEP, 02, 111 (2014) · Zbl 1333.83043
[13] N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General relativity from scattering amplitudes, Phys. Rev. Lett.121 (2018) 171601 [arXiv:1806.04920] [INSPIRE].
[14] Damour, T., Gravitational scattering, post-Minkowskian approximation and effective one-body theory, Phys. Rev. D, 94, 104015 (2016)
[15] T. Damour, High-energy gravitational scattering and the general relativistic two-body problem, Phys. Rev. D97 (2018) 044038 [arXiv:1710.10599] [INSPIRE].
[16] Cheung, C.; Rothstein, IZ; Solon, MP, From scattering amplitudes to classical potentials in the post-Minkowskian expansion, Phys. Rev. Lett., 121, 251101 (2018)
[17] Kosower, DA; Maybee, B.; O’Connell, D., Amplitudes, observables, and classical scattering, JHEP, 02, 137 (2019) · Zbl 1411.81217
[18] Maybee, B.; O’Connell, D.; Vines, J., Observables and amplitudes for spinning particles and black holes, JHEP, 12, 156 (2019) · Zbl 1431.83101
[19] Bern, Z.; Cheung, C.; Roiban, R.; Shen, C-H; Solon, MP; Zeng, M., Scattering amplitudes and the conservative hamiltonian for binary systems at third post-Minkowskian order, Phys. Rev. Lett., 122, 201603 (2019)
[20] Bern, Z.; Cheung, C.; Roiban, R.; Shen, C-H; Solon, MP; Zeng, M., Black hole binary dynamics from the double copy and effective theory, JHEP, 10, 206 (2019) · Zbl 1427.83035
[21] Antonelli, A.; Buonanno, A.; Steinhoff, J.; van de Meent, M.; Vines, J., Energetics of two-body Hamiltonians in post-Minkowskian gravity, Phys. Rev. D, 99, 104004 (2019)
[22] A. Koemans Collado and S. Thomas, Eikonal scattering in Kaluza-Klein gravity, JHEP04 (2019) 171 [arXiv:1901.05869] [INSPIRE]. · Zbl 1415.83049
[23] Cristofoli, A.; Damgaard, PH; Di Vecchia, P.; Heissenberg, C., Second-order Post-Minkowskian scattering in arbitrary dimensions, JHEP, 07, 122 (2020) · Zbl 1451.83008
[24] Z. Bern, H. Ita, J. Parra-Martinez and M.S. Ruf, Universality in the classical limit of massless gravitational scattering, Phys. Rev. Lett.125 (2020) 031601 [arXiv:2002.02459] [INSPIRE].
[25] R.J. Glauber, High-energy collision theory, Lect. Theor. Phys. (1959) 315. · Zbl 0104.23302
[26] Levy, M.; Sucher, J., Eikonal approximation in quantum field theory, Phys. Rev., 186, 1656 (1969)
[27] Soldate, M., Partial wave unitarity and closed string amplitudes, Phys. Lett. B, 186, 321 (1987)
[28] G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B198 (1987) 61 [INSPIRE].
[29] Amati, D.; Ciafaloni, M.; Veneziano, G., Superstring collisions at Planckian energies, Phys. Lett. B, 197, 81 (1987)
[30] Amati, D.; Ciafaloni, M.; Veneziano, G., Classical and quantum gravity effects from planckian energy superstring collisions, Int. J. Mod. Phys. A, 3, 1615 (1988)
[31] Muzinich, IJ; Soldate, M., High-energy unitarity of gravitation and strings, Phys. Rev. D, 37, 359 (1988)
[32] Amati, D.; Ciafaloni, M.; Veneziano, G., Higher order gravitational deflection and soft bremsstrahlung in Planckian energy superstring collisions, Nucl. Phys. B, 347, 550 (1990)
[33] Kabat, DN; Ortiz, M., Eikonal quantum gravity and Planckian scattering, Nucl. Phys. B, 388, 570 (1992)
[34] Amati, D.; Ciafaloni, M.; Veneziano, G., Towards an S-matrix description of gravitational collapse, JHEP, 02, 049 (2008)
[35] Laenen, E.; Stavenga, G.; White, CD, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP, 03, 054 (2009)
[36] S. Melville, S.G. Naculich, H.J. Schnitzer and C.D. White, Wilson line approach to gravity in the high energy limit, Phys. Rev. D89 (2014) 025009 [arXiv:1306.6019] [INSPIRE].
[37] R. Akhoury, R. Saotome and G. Sterman, High energy scattering in perturbative quantum gravity at next to leading power, arXiv:1308.5204 [INSPIRE].
[38] Di Vecchia, P.; Luna, A.; Naculich, SG; Russo, R.; Veneziano, G.; White, CD, A tale of two exponentiations in \(\mathcal{N} = 8\) supergravity, Phys. Lett. B, 798, 134927 (2019) · Zbl 1434.83160
[39] Di Vecchia, P.; Naculich, SG; Russo, R.; Veneziano, G.; White, CD, A tale of two exponentiations in \(\mathcal{N} = 8\) supergravity at subleading level, JHEP, 03, 173 (2020) · Zbl 1435.83198
[40] Kulaxizi, M.; Ng, GS; Parnachev, A., Subleading eikonal, AdS/CFT and double stress tensors, JHEP, 10, 107 (2019) · Zbl 1427.81139
[41] A. Koemans Collado, P. Di Vecchia and R. Russo, Revisiting the second post-Minkowskian eikonal and the dynamics of binary black holes, Phys. Rev. D100 (2019) 066028 [arXiv:1904.02667] [INSPIRE].
[42] Abreu, S., Two-loop four-graviton scattering amplitudes, Phys. Rev. Lett., 124, 211601 (2020)
[43] Z. Bern, A. Luna, R. Roiban, C.-H. Shen and M. Zeng, Spinning black hole binary dynamics, scattering amplitudes and effective field theory, arXiv:2005.03071 [INSPIRE].
[44] Cremmer, E.; Julia, B.; Scherk, J., Supergravity theory in eleven-dimensions, Phys. Lett. B, 76, 409 (1978) · Zbl 1156.83327
[45] E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The Lagrangian, Phys. Lett. B80 (1978) 48 [INSPIRE].
[46] Cremmer, E.; Julia, B., The SO(8) supergravity, Nucl. Phys. B, 159, 141 (1979)
[47] T. Damour, Classical and quantum scattering in post-Minkowskian gravity, Phys. Rev. D102 (2020) 024060 [arXiv:1912.02139] [INSPIRE].
[48] Blümlein, J.; Maier, A.; Marquard, P.; Schäfer, G., Testing binary dynamics in gravity at the sixth post-Newtonian level, Phys. Lett. B, 807, 135496 (2020)
[49] D. Bini, T. Damour and A. Geralico, Binary dynamics at the fifth and fifth-and-a-half post-Newtonian orders, Phys. Rev. D102 (2020) 024062 [arXiv:2003.11891] [INSPIRE].
[50] Blümlein, J.; Maier, A.; Marquard, P.; Schäfer, G.; Schneider, C., From momentum expansions to post-Minkowskian Hamiltonians by computer algebra algorithms, Phys. Lett. B, 801, 135157 (2020) · Zbl 1435.83039
[51] Cheung, C.; Solon, MP, Classical gravitational scattering at \(\mathcal{O} \)(G^3) from Feynman diagrams, JHEP, 06, 144 (2020) · Zbl 1439.83013
[52] Caron-Huot, S.; Zahraee, Z., Integrability of black hole orbits in maximal supergravity, JHEP, 07, 179 (2019) · Zbl 1418.83068
[53] Green, MB; Schwarz, JH; Brink, L., N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B, 198, 474 (1982)
[54] Bern, Z.; Dixon, LJ; Dunbar, DC; Perelstein, M.; Rozowsky, JS, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B, 530, 401 (1998)
[55] Bern, Z.; Carrasco, JJ; Dixon, LJ; Johansson, H.; Kosower, DA; Roiban, R., Three-loop superfiniteness of N = 8 supergravity, Phys. Rev. Lett., 98, 161303 (2007)
[56] Bern, Z.; Carrasco, JJM; Dixon, LJ; Johansson, H.; Roiban, R., Manifest ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravity, Phys. Rev. D, 78, 105019 (2008)
[57] Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The ultraviolet behavior of N = 8 supergravity at four loops, Phys. Rev. Lett.103 (2009) 081301 [arXiv:0905.2326] [INSPIRE]. · Zbl 1222.83182
[58] Bern, Z.; Carrasco, JJM; Dixon, LJ; Johansson, H.; Roiban, R., Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes, Phys. Rev. D, 85, 105014 (2012)
[59] Bern, Z.; Carrasco, JJM; Chen, W-M; Johansson, H.; Roiban, R.; Zeng, M., Five-loop four-point integrand of N = 8 supergravity as a generalized double copy, Phys. Rev. D, 96, 126012 (2017)
[60] Z. Bern et al., Ultraviolet properties of \(\mathcal{N} = 8\) supergravity at five loops, Phys. Rev. D98 (2018) 086021 [arXiv:1804.09311] [INSPIRE].
[61] A. Edison, E. Herrmann, J. Parra-Martinez and J. Trnka, Gravity loop integrands from the ultraviolet, arXiv:1909.02003 [INSPIRE].
[62] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[63] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · Zbl 1049.81644
[64] Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e^+e^−to four partons, Nucl. Phys. B513 (1998) 3 [hep-ph/9708239] [INSPIRE].
[65] Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP08 (2004) 012 [hep-ph/0404293] [INSPIRE].
[66] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B, 725, 275 (2005) · Zbl 1178.81202
[67] Kawai, H.; Lewellen, DC; Tye, SHH, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B, 269, 1 (1986)
[68] Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[69] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
[70] Bern, Z.; Carrasco, JJ; Chen, W-M; Johansson, H.; Roiban, R., Gravity amplitudes as generalized double copies of gauge-theory amplitudes, Phys. Rev. Lett., 118, 181602 (2017)
[71] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B522 (1998) 321 [hep-ph/9711391] [INSPIRE].
[72] Neill, D.; Rothstein, IZ, Classical space-times from the S matrix, Nucl. Phys. B, 877, 177 (2013) · Zbl 1284.83052
[73] Kotikov, AV, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B, 254, 158 (1991)
[74] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B412 (1994) 751 [hep-ph/9306240] [INSPIRE]. · Zbl 1007.81512
[75] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cim. A, 110, 1435 (1997)
[76] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329] [INSPIRE]. · Zbl 1071.81089
[77] Henn, JM, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett., 110, 251601 (2013)
[78] Henn, JM, Lectures on differential equations for Feynman integrals, J. Phys. A, 48, 153001 (2015) · Zbl 1312.81078
[79] Ablinger, J.; Blümlein, J.; Marquard, P.; Rana, N.; Schneider, C., Automated solution of first order factorizable systems of differential equations in one variable, Nucl. Phys. B, 939, 253 (2019) · Zbl 1409.81080
[80] Bern, Z.; Bjerrum-Bohr, NEJ; Dunbar, DC, Inherited twistor-space structure of gravity loop amplitudes, JHEP, 05, 056 (2005)
[81] Bjerrum-Bohr, NEJ; Dunbar, DC; Ita, H., Six-point one-loop N = 8 supergravity NMHV amplitudes and their ir behaviour, Phys. Lett. B, 621, 183 (2005) · Zbl 1247.83219
[82] Bjerrum-Bohr, NEJ; Dunbar, DC; Ita, H.; Perkins, WB; Risager, K., The no-triangle hypothesis for N = 8 supergravity, JHEP, 12, 072 (2006) · Zbl 1226.83081
[83] Bern, Z.; Dixon, LJ; Roiban, R., Is N = 8 supergravity ultraviolet finite?, Phys. Lett. B, 644, 265 (2007) · Zbl 1248.83136
[84] Z. Bern, J.J. Carrasco, D. Forde, H. Ita and H. Johansson, Unexpected cancellations in gravity theories, Phys. Rev. D77 (2008) 025010 [arXiv:0707.1035] [INSPIRE].
[85] Bjerrum-Bohr, NEJ; Vanhove, P., Explicit cancellation of triangles in one-loop gravity amplitudes, JHEP, 04, 065 (2008) · Zbl 1246.81171
[86] Kälin, G.; Porto, RA, From boundary data to bound states, JHEP, 01, 072 (2020) · Zbl 1434.85004
[87] G. Kälin and R.A. Porto, From boundary data to bound states. Part II. Scattering angle to dynamical invariants (with twist), JHEP02 (2020) 120 [arXiv:1911.09130] [INSPIRE]. · Zbl 1435.85003
[88] Andrianopoli, L.; D’Auria, R.; Ferrara, S.; Fré, P.; Trigiante, M., E_7(7) duality, BPS black hole evolution and fixed scalars, Nucl. Phys. B, 509, 463 (1998) · Zbl 0934.83048
[89] Arcioni, G., N = 8 BPS black holes with 1/2 or 1/4 supersymmetry and solvable Lie algebra decompositions, Nucl. Phys. B, 542, 273 (1999) · Zbl 0953.83055
[90] M.B. Green, J. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge U.K. (1988).
[91] Nair, VP, A current algebra for some gauge theory amplitudes, Phys. Lett. B, 214, 215 (1988)
[92] Beenakker, W.; Denner, A., Infrared divergent scalar box integrals with applications in the electroweak standard model, Nucl. Phys. B, 338, 349 (1990)
[93] Akhoury, R.; Saotome, R.; Sterman, G., Collinear and soft divergences in perturbative quantum gravity, Phys. Rev. D, 84, 104040 (2011)
[94] V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts in Modern Physics volume 211, Springer, Germany (2004). · Zbl 1098.81003
[95] Goldberger, WD; Rothstein, IZ, An effective field theory of gravity for extended objects, Phys. Rev. D, 73, 104029 (2006)
[96] Gilmore, JB; Ross, A., Effective field theory calculation of second post-Newtonian binary dynamics, Phys. Rev. D, 78, 124021 (2008)
[97] Chetyrkin, KG; Tkachov, FV, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B, 192, 159 (1981)
[98] M. Prausa, epsilon: a tool to find a canonical basis of master integrals, Comput. Phys. Commun.219 (2017) 361 [arXiv:1701.00725] [INSPIRE]. · Zbl 1411.81019
[99] Gituliar, O.; Magerya, V., Fuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon form, Comput. Phys. Commun., 219, 329 (2017) · Zbl 1411.81015
[100] P.V. Landshoff and J.C. Polkinghorne, Iterations of Regge cuts, Phys. Rev.181 (1969) 1989 [INSPIRE].
[101] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. · Zbl 0973.81082
[102] S. Laporta and E. Remiddi, The analytical value of the electron (g − 2) at order α^3in QED, Phys. Lett. B379 (1996) 283 [hep-ph/9602417] [INSPIRE].
[103] A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, arXiv:1901.07808 [INSPIRE].
[104] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE]. · Zbl 0919.11080
[105] Goncharov, AB; Spradlin, M.; Vergu, C.; Volovich, A., Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett., 105, 151605 (2010)
[106] Duhr, C., Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP, 08, 043 (2012) · Zbl 1397.16028
[107] Caron-Huot, S.; Henn, JM, Iterative structure of finite loop integrals, JHEP, 06, 114 (2014) · Zbl 1333.81217
[108] Herrmann, E.; Parra-Martinez, J., Logarithmic forms and differential equations for Feynman integrals, JHEP, 02, 099 (2020) · Zbl 1435.81078
[109] D.A. Kosower and K.J. Larsen, Maximal unitarity at two loops, Phys. Rev. D85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].
[110] Caron-Huot, S.; Larsen, KJ, Uniqueness of two-loop master contours, JHEP, 10, 026 (2012)
[111] Abreu, S.; Britto, R.; Duhr, C.; Gardi, E., Cuts from residues: the one-loop case, JHEP, 06, 114 (2017) · Zbl 1380.81421
[112] Bosma, J.; Sogaard, M.; Zhang, Y., Maximal cuts in arbitrary dimension, JHEP, 08, 051 (2017) · Zbl 1381.81146
[113] Sogaard, M.; Zhang, Y., Unitarity cuts of integrals with doubled propagators, JHEP, 07, 112 (2014)
[114] Primo, A.; Tancredi, L., On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys. B, 916, 94 (2017) · Zbl 1356.81136
[115] V.A. Smirnov, Analytic tools for Feynman integrals, Springer, Germany (2012) [INSPIRE]. · Zbl 1268.81004
[116] V.A. Smirnov, Analytical result for dimensionally regularized massive on-shell planar double box, Phys. Lett. B524 (2002) 129 [hep-ph/0111160] [INSPIRE]. · Zbl 0983.81065
[117] Henn, JM; Smirnov, VA, Analytic results for two-loop master integrals for Bhabha scattering I, JHEP, 11, 041 (2013)
[118] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15 (2000) 725 [hep-ph/9905237] [INSPIRE]. · Zbl 0951.33003
[119] T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun.141 (2001) 296 [hep-ph/0107173] [INSPIRE]. · Zbl 0991.65022
[120] Bianchi, MS; Leoni, M., A QQ → QQ planar double box in canonical form, Phys. Lett. B, 777, 394 (2018) · Zbl 1411.81092
[121] G. Heinrich and V.A. Smirnov, Analytical evaluation of dimensionally regularized massive on-shell double boxes, Phys. Lett. B598 (2004) 55 [hep-ph/0406053] [INSPIRE].
[122] Rothstein, IZ; Stewart, IW, An effective field theory for forward scattering and factorization violation, JHEP, 08, 025 (2016) · Zbl 1390.81365
[123] M. Levi, A.J. Mcleod and M. Von Hippel, N^3LO gravitational spin-orbit coupling at order G^4, arXiv:2003.02827 [INSPIRE].
[124] M. Levi, A.J. Mcleod and M. Von Hippel, NNNLO gravitational quadratic-in-spin interactions at the quartic order in G, arXiv:2003.07890 [INSPIRE].
[125] J. Vines, Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings, Class. Quant. Grav.35 (2018) 084002 [arXiv:1709.06016] [INSPIRE]. · Zbl 1409.83116
[126] J. Vines, J. Steinhoff and A. Buonanno, Spinning-black-hole scattering and the test-black-hole limit at second post-Minkowskian order, Phys. Rev. D99 (2019) 064054 [arXiv:1812.00956] [INSPIRE].
[127] Guevara, A.; Ochirov, A.; Vines, J., Scattering of spinning black holes from exponentiated soft factors, JHEP, 09, 056 (2019) · Zbl 1423.83030
[128] Chung, M-Z; Huang, Y-T; Kim, J-W; Lee, S., The simplest massive S-matrix: from minimal coupling to Black Holes, JHEP, 04, 156 (2019) · Zbl 1415.83014
[129] Guevara, A.; Ochirov, A.; Vines, J., Black-hole scattering with general spin directions from minimal-coupling amplitudes, Phys. Rev. D, 100, 104024 (2019)
[130] Arkani-Hamed, N.; Huang, Y-t; O’Connell, D., Kerr black holes as elementary particles, JHEP, 01, 046 (2020) · Zbl 1434.83049
[131] Damgaard, PH; Haddad, K.; Helset, A., Heavy black hole effective theory, JHEP, 11, 070 (2019) · Zbl 1429.83034
[132] N. Siemonsen and J. Vines, Test black holes, scattering amplitudes and perturbations of Kerr spacetime, Phys. Rev. D101 (2020) 064066 [arXiv:1909.07361] [INSPIRE].
[133] Aoude, R.; Haddad, K.; Helset, A., On-shell heavy particle effective theories, JHEP, 05, 051 (2020) · Zbl 1437.83053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.