# zbMATH — the first resource for mathematics

Theory of the fuzzy controller: An introduction. (English) Zbl 0785.93058
Summary: First we introduce notation in an attempt to standardize the description of a basic fuzzy controller. If $$r_ 1,r_ 2,\dots,r_ n$$ are the real number inputs to the fuzzy controller and $$\delta$$ is its defuzzified output, then $$\delta= F(r_ 1,\dots,r_ n)$$ for some function $$F$$. By the ‘theory of the fuzzy controller’ we mean in this paper the study of the structure of $$F$$ for elementary fuzzy controllers. Using this standardized notation, first we survey the known results on the theory of the fuzzy controller and then discuss important future research topics in this area.

##### MSC:
 93C42 Fuzzy control/observation systems
##### Keywords:
expert systems; fuzzy controller
Full Text:
##### References:
 [1] Braae, M.; Rutherford, D.A., Fuzzy relations in a control setting, Kybernetes, 7, 185-188, (1978) · Zbl 0387.93004 [2] Braae, M.; Rutherford, D.A., Selection of parameters for a fuzzy logic controller, Fuzzy sets and systems, 2, 185-199, (1979) · Zbl 0418.94034 [3] Braae, M.; Rutherford, D.A., Theoretical and linguistic aspects of the fuzzy logic controller, Automatica, 15, 553-577, (1979) · Zbl 0437.93052 [4] Buckley, J.J., Further results for the linear fuzzy controller, Kybernetes, 18, 48-55, (1989) · Zbl 0699.93036 [5] Buckley, J.J., Fuzzy controller: further limit theorems for linear control rules, Fuzzy sets and systems, 36, 225-233, (1990) · Zbl 0719.93059 [6] Buckley, J.J., Nonlinear fuzzy controller, Inform. sci., 60, 261-274, (1991) · Zbl 0744.93065 [7] Buckley, J.J., Fuzzy vs non-fuzzy controllers, Control and cybernet., 18, 127-130, (1989) · Zbl 0728.93053 [8] Buckley, J.J., Fuzzy I/O controller, Fuzzy sets and systems, 43, 127-137, (1991) · Zbl 0758.93041 [9] Buckley, J.J.; Ying, H., Fuzzy controller theory: limit theorems for linear fuzzy control rules, Automatica, 25, 469-472, (1989) · Zbl 0685.93003 [10] Buckley, J.J.; Ying, H., Expert fuzzy controller, Fuzzy sets and systems, 44, 373-390, (1991) · Zbl 0751.93055 [11] Buckley, J.J.; Ying, H., Linear fuzzy controller: it is a linear non-fuzzy controller, Inform. sci., 51, 183-192, (1990) · Zbl 0718.93037 [12] Buckley, J.J.; Siler, W.; Ying, H., Fuzzy control theory: A nonlinear case, Automatica, 26, 513-520, (1990) · Zbl 0713.93036 [13] Graham, B.P.; Newell, R.B., Fuzzy adaptive control of a first-order process, Fuzzy sets and systems, 31, 47-65, (1989) · Zbl 0674.93037 [14] Gupta, M.M.; Pedrycz, W.; Kiszka, J.B., Fuzzy control: from fuzzy controllers to cognitive controllers, (), 258-261 [15] Hayashi, I.; Nomura, H.; Wakami, N., Artificial neural network driven fuzzy control and its application to the learning of inverted pendulum system, (), 610-613 [16] Kickert, W.J.M.; Mamdani, E.H., Analysis of a fuzzy logic controller, Fuzzy sets and systems, 1, 29-44, (1978) · Zbl 0364.93022 [17] Kiszka, J.B.; Kochanska, M.E.; Sliwinska, D.S., The influence of some parameters on the accuracy of a fuzzy model, (), 187-230 [18] MacVicar-Whelan, P.J., Fuzzy sets for man-machine interaction, Internat. J. man-machine stud., 8, 687-697, (1976) · Zbl 0342.68057 [19] Maeda, M.; Murakami, S., A design for a fuzzy logic controller, Inform. sci., 45, 315-330, (1988) · Zbl 0662.93004 [20] Mizumoto, M., Fuzzy controls under various fuzzy reasoning methods, Inform. sci., 45, 129-151, (1988) [21] Mizumoto, M., Improvement methods of fuzzy controls, (), 60-62 [22] Peng, X.T.; Liu, S.M.; Yamakawa, T.; Wang, P.; Liu, X., Self-regulating PID controllers and their application to a temperature controlling process, (), 355-364 · Zbl 0850.93465 [23] Procyk, T.J.; Mamdani, E.H., A linguistic self-organizing process controller, Automatica, 15, 15-30, (1979) · Zbl 0393.68082 [24] Ray, K.S.; Dutta Majumder, D., Application of circle criteria for stability analysis of linear SISO and MIMO systems associated with fuzzy logic controller, IEEE trans. systems man cybernet., 14, 345-349, (1984) [25] Ray, K.S.; Majumder, D.D., Fuzzy logic control of a nonlinear multivariable steam generating unit using decoupling theory, IEEE trans. systems man cybernet., 15, 539-559, (1985) [26] Siler, W.; Ying, H., Fuzzy control theory: the linear case, Fuzzy sets and systems, 33, 275-290, (1989) · Zbl 0683.93002 [27] Sugeno, M.; Nishida, M., Fuzzy control of model car, Fuzzy sets and systems, 16, 103-113, (1985) [28] Sugeno, M.; Kang, G.T., Fuzzy modeling and control of multilayer incinerator, Fuzzy sets and systems, 18, 329-346, (1986) · Zbl 0612.93022 [29] Taha, H.A., Operations research, (1987), Macmillan New York [30] Takagi, H.; Hayashi, I., NN-driven fuzzy reasoning, Int. J. approximate reasoning, 5, 191-212, (1991) · Zbl 0733.68074 [31] Wang, P.-Z.; Zhang, H.-M.; Xu, W., Pad-analysis of fuzzy control stability, Fuzzy sets and systems, 38, 27-42, (1990) · Zbl 0714.93029 [32] Yasunobu, S.; Hasegawa, T., Predictive fuzzy control and application for automatic container crane operation systems, (), 349-352
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.