×

Discretized mid-value CLVI-PDNN based redundancy resolution for single leg of quadruped robot. (English) Zbl 1435.70011

Summary: The two most important performance indicators of quadruped robot are load capacity and walking speed, and these performance indicators of the whole robot finally reflect on the joint torques and angular velocities. To satisfy different requirements of walking speed and load capacity when quadruped robots implement different tasks, the joint torques and angular velocities need to be balanced with physical constraints of the joints. A single leg with redundant DOF (degree of freedom) could optimize the distribution of joint torques or angular velocities based on different performance requirements. This paper presents a kind of new recurrent neural networks taking joint torques and angular velocities simultaneously into consideration and proposes mid-value CLVI-PDNN to achieve the optimal joint torques and angular velocities with physical constraints of the mechanism as described in our previous paper. Because the continuous mid-value CLVI-PDNN has difficulty in real-time operation because of too much calculation workload, two kinds of methods are proposed to discretize the mid-value CLVI-PDNN for application on computer or digital circuit. The simulation results demonstrate the efficacy of the algorithm proposed in this paper.

MSC:

70B15 Kinematics of mechanisms and robots
93C85 Automated systems (robots, etc.) in control theory
49J27 Existence theories for problems in abstract spaces
49M25 Discrete approximations in optimal control
70E60 Robot dynamics and control of rigid bodies
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lee, S.; Bejczy, A. K., Redundant arm kinematic control based on parameterization, Proceedings of the 1991 IEEE International Conference on Robotics and Automation
[2] Tolani, D.; Badler, N. I., Real-time inverse kinematics of the human arm, Presence: Teleoperators and Virtual Environments, 5, 4, 393-401 (1996) · doi:10.1162/pres.1996.5.4.393
[3] Shimizu, M.; Kakuya, H.; Yoon, W.-K.; Kitagaki, K.; Kosuge, K., Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution, IEEE Transactions on Robotics, 24, 5, 1131-1142 (2008) · doi:10.1109/TRO.2008.2003266
[4] Singh, G. K.; Claassens, J., An analytical solution for the inverse kinematics of a redundant 7dof manipulator with link offsets, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
[5] Zhang, T.; Wei, Q.; Ma, H., Position/force control for a single leg of a quadruped robot in an operation space, International Journal of Advanced Robotic Systems, 10, 137 (2013)
[6] Ding, H.; Chan, S. P., Real-time planning algorithm for obstacle avoidance of redundant robots, Journal of Intelligent & Robotic Systems, 16, 3, 229-243 (1996)
[7] Khoukhi, A.; Baron, L.; Balazinski, M., A projected gradient augmented Lagrangian approach to multi-objective trajectory planning of redundant robots, Transactions of the Canadian Society for Mechanical Engineering, 31, 4, 391-405 (2007) · doi:10.1139/tcsme-2007-0028
[8] Mayorga, R. V.; Sanongboon, P., An artificial neural network approach for inverse kinematics computation and singularities prevention of redundant manipulators, Journal of Intelligent & Robotic Systems, 44, 1, 1-23 (2005)
[9] O’Neil, K. A., Divergence of linear acceleration-based redundancy resolution schemes, IEEE Transactions on Robotics and Automation, 18, 4, 625-631 (2002) · doi:10.1109/TRA.2002.801046
[10] Goble, J. A.; Zhang, Y.; Shimansky, Y.; Sharma, S.; Dounskaia, N. V., Directional biases reveal utilization of arm’s biomechanical properties for optimization of motor behavior, Journal of Neurophysiology, 98, 3, 1240-1252 (2007) · doi:10.1152/jn.00582.2007
[11] Ohta, K.; Svinin, M. M.; Luo, Z.; Hosoe, S.; Laboissière, R., Optimal trajectory formation of constrained human arm reaching movements, Biological Cybernetics, 91, 1, 23-36 (2004) · Zbl 1060.92012
[12] Zhang, Y.; Wang, J.; Xia, Y., A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits, IEEE Transactions on Neural Networks and Learning Systems, 14, 3, 658-667 (2003) · doi:10.1109/TNN.2003.810607
[13] Righetti, L.; Buchli, J.; Mistry, M.; Kalakrishnan, M.; Schaal, S., Optimal distribution of contact forces with inverse-dynamics control, International Journal of Robotics Research, 32, 3, 280-298 (2013) · doi:10.1177/0278364912469821
[14] Siciliano, B.; Khatib, O., Springer Handbook of Robotics (2008), Berlin, Germany: Springer, Berlin, Germany · Zbl 1171.93300 · doi:10.1007/978-3-540-30301-5
[15] Szkodny, T.; Legowski, A., The decreasing of 3D position errors in the system of two cameras by means of the interpolation method, Proceedings of the International Conference on Intelligent Robotics and Applications, Springer
[16] Nie, Z.; Xu, H.; Yao, G.; Wu, L., Study on interpolation algorithm of printing screen transferred manipulator, Advanced Graphic Communications, Packaging Technology and Materials, 369, 675-681 (2016), New York, NY, USA: Springer, New York, NY, USA
[17] Kokurin, M. Y., Stable gradient projection method for nonlinear conditionally well-posed inverse problems, Journal of Inverse and ILL-Posed Problems, 24, 3, 323-332 (2016) · Zbl 1338.65153 · doi:10.1515/jiip-2015-0047
[18] Liu, J.; Yang, C.; Fang, J., Improved optimization algorithm of the gram measurement matrix based on gradient projection, Journal of Huazhong University of Science and Technology: Nature Science, 44, 8, 62-65 (2016)
[19] Jin, W.; Censor, Y.; Jiang, M., Bounded perturbation resilience of projected scaled gradient methods, Computational Optimization And Applications, 63, 2, 365-392 (2016) · Zbl 1339.90262 · doi:10.1007/s10589-015-9777-x
[20] Damas, B.; Santos-Victor, J., An online algorithm for simultaneously learning forward and inverse kinematics, Proceedings of the 25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012 · doi:10.1109/IROS.2012.6386156
[21] Kanoun, O.; Lamiraux, F.; Wieber, P.-B., Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task, IEEE Transactions on Robotics, 27, 4, 785-792 (2011) · doi:10.1109/TRO.2011.2142450
[22] Chen, C.; Jackson, D., Parameterization and evaluation of robotic orientation workspace: A geometric treatment, IEEE Transactions on Robotics, 27, 4, 656-663 (2011) · doi:10.1109/TRO.2011.2135230
[23] Pena, C. A.; Guzman, M. A.; Cardenas, P. F., Inverse kinematics of a 6 dof industrial robot manipulator based on bio-inspired multi-objective optimization techniques, Proceedings of the IEEE Colombian Conference on Robotics and Automation (CCRA) · doi:10.1109/CCRA.2016.7811428
[24] Hou, Z.-G.; Cheng, L.; Tan, M., Multicriteria optimization for coordination of redundant robots using a dual neural network, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40, 4, 1075-1087 (2010) · doi:10.1109/TSMCB.2009.2034073
[25] Zhang, Y. N., Analysis and design of recurrent neural networks and their applications to control and robotic systems, 2003
[26] Ma, S., A balancing technique to stabilize local torque optimization solution of redundant manipulators, Journal of Robotic Systems, 13, 3, 177-185 (1996) · Zbl 0875.70030 · doi:10.1002/(SICI)1097-4563(199603)13:3<177::AID-ROB5>3.3.CO;2-I
[27] Zhang, Y.; Guo, D.; Ma, S., Different-level simultaneous minimization of joint-velocity and joint-torque for redundant robot manipulators, Journal of Intelligent & Robotic Systems, 72, 3-4, 301-323 (2013)
[28] Zhang, Y.; Lv, X.; Li, Z.; Yang, Z.; Chen, K., Repetitive motion planning of PA10 robot arm subject to joint physical limits and using LVI-based primal-dual neural network, Mechatronics, 18, 9, 475-485 (2008) · doi:10.1016/j.mechatronics.2008.04.005
[29] Zhang, Y.; Ma, W.; Li, X.-D., MATLAB simulink modeling and simulation of LVI-based primal-dual neural network for solving linear and quadratic programs, Neurocomputing, 72, 7-9, 1679-1687 (2009) · doi:10.1016/j.neucom.2008.07.008
[30] Zhang, Y.; Zhang, Z., Repetitive Motion Planning and Control of Redundant Robot Manipulators (2013), Heidelberg, Germany: Springer, Heidelberg, Germany · Zbl 1331.93002
[31] Zhang, T.; An, H.; Ma, H., Joint torque and velocity optimization for a redundant leg of quadruped robot, International Journal of Advanced Robotic Systems, 14, 5 (2017)
[32] Pérez-Ilzarbe, M. J., Convergence analysis of a discrete-time recurrent neural network to perform quadratic real optimization with bound constraints, IEEE Transactions on Neural Networks and Learning Systems, 9, 6, 1344-1351 (1998) · doi:10.1109/72.728385
[33] Pérez-Ilzarbe, M. J., New discrete-time recurrent neural network proposal for quadratic optimization with general linear constraints, IEEE Transactions on Neural Networks and Learning Systems, 24, 2, 322-328 (2013) · doi:10.1109/TNNLS.2012.2223484
[34] Tang, H.; Li, H.; Yi, Z., A discrete-time neural network for optimization problems with hybrid constraints, IEEE Transactions on Neural Networks and Learning Systems, 21, 7, 1184-1189 (2010) · doi:10.1109/TNN.2010.2049368
[35] Liu, Q.; Cao, J., Global exponential stability of discrete-time recurrent neural network for solving quadratic programming problems subject to linear constraints, Neurocomputing, 74, 17, 3494-3501 (2011) · doi:10.1016/j.neucom.2011.06.003
[36] Zhang, Y.; Ma, W.; Cai, B., From Zhang neural network to Newton iteration for matrix inversion, IEEE Transactions on Circuits and Systems I: Regular Papers, 56, 7, 1405-1415 (2009) · Zbl 1468.65026 · doi:10.1109/TCSI.2008.2007065
[37] Zhang, Y.; Xiao, L.; Ruan, G.; Li, Z., Continuous and discrete time Zhang dynamics for time-varying 4th root finding, Numerical Algorithms, 57, 1, 35-51 (2011) · Zbl 1215.65090 · doi:10.1007/s11075-010-9410-0
[38] Guo, D.; Zhang, Y., Zhang neural network, Getz-Marsden dynamic system, and discrete-time algorithms for time-varying matrix inversion with application to robots’ kinematic control, Neurocomputing, 97, 22-32 (2012) · doi:10.1016/j.neucom.2012.05.012
[39] Zhang, Y. N.; Yang, Y. W.; Cai, B. H.; Guo, D. S., Zhang neural network and its application to Newton iteration for matrix square root estimation, Neural Computing and Applications, 21, 3, 453-460 (2012) · doi:10.1007/s00521-010-0445-x
[40] Zhang, Y.; Mu, B.; Zheng, H., Link between and comparison and combination of Zhang neural network and quasi-Newton BFGS method for time-varying quadratic minimization, IEEE Transactions on Cybernetics, 43, 2, 490-503 (2013) · doi:10.1109/TSMCB.2012.2210038
[41] Jin, L.; Zhang, Y., Discrete-time Zhang neural network of \(O(τ^3)\) pattern for time-varying matrix pseudoinversion with application to manipulator motion generation, Elsevier Science Publishers (2014)
[42] Liao, B.; Zhang, Y.; Jin, L., Taylor \(O(h^3)\) discretization of ZNN models for dynamic equality-constrained quadratic programming with application to manipulators, IEEE Transactions on Neural Networks and Learning Systems, 27, 2, 225-237 (2016) · doi:10.1109/TNNLS.2015.2435014
[43] Jin, L.; Zhang, Y., Discrete-time Zhang neural network for online time-varying nonlinear optimization with application to manipulator motion generation, IEEE Transactions on Neural Networks and Learning Systems, 26, 7, 1525-1531 (2015) · doi:10.1109/TNNLS.2014.2342260
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.