×

Infinitely many small energy solutions for fractional coupled Schrödinger system with critical growth. (English) Zbl 1412.26008

Summary: In this paper, we investigate the small energy solutions for a coupled fractional Schrödinger system with critical growth. The existence criteria of infinitely many small energy solutions are established without Ambrosetti-Rabinowitz (A-R) condition by variant fountain theorem. Our main results are completely new and complement the previously known studies.

MSC:

26A33 Fractional derivatives and integrals
34B37 Boundary value problems with impulses for ordinary differential equations
34K10 Boundary value problems for functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abd-Elhameed, W. M.; Youssri, Y. H., Spectral solutions for fractional differential equations via a novel Lucas operational matrix of fractional derivatives, Rom. J. Phys., 61, 795-813 (2016)
[2] Abdelkawy, M. A.; Zaky, M. A.; Bhrawy, A. H.; Baleanu, D., Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Rom. Rep. Phys., 67, 1-19 (2015)
[3] Agila, A.; Baleanu, D.; Eid, R.; Irfanoglu, B., Applications of the extended fractional Euler-Lagrange equations model to freely oscillating dynamical systems, Rom. J. Phys., 61, 350-359 (2016)
[4] Álvarez-Caudevilla, P.; Colorado, E.; Galaktionov, V. A., Existence of solutions for a system of coupled nonlinear stationary bi-harmonic Schrödinger equations, Nonlinear Anal. Real World Appl., 23, 78-93 (2015) · Zbl 1317.35061 · doi:10.1016/j.nonrwa.2014.11.009
[5] Applebaum, D., Lévy processes-from probalility to fnance and quantum groups, Notices Amer. Math. Soc., 51, 1336-1347 (2004) · Zbl 1053.60046
[6] Baleanu, D.; Muslih, S. I.; Taş, K., Fractional Hamiltonian analysis of higher order derivatives systems, J. Math. Phys., 2006, 1-8 (2006) · Zbl 1112.81074 · doi:10.1063/1.2356797
[7] Bartsch, T.; Wang, Z. Q., Existence and multiplicity results for some superlinear elliptic problems on \(R^N\), Comm. Partial Differential Equations, 20, 1725-1741 (1995) · Zbl 0837.35043 · doi:10.1080/03605309508821149
[8] A. H. Bhrawy, A new spectral algorithm for time-space fractional partial differential equations with subdiffusion and superdiffusion, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 17, 39-47 (2016)
[9] Bisci, G. M.; Rădulescu, V. D., Ground state solutions of scalar field fractional for Schrödinger equations, Calc. Var. Partial Differ. Equ., 54, 2985-3008 (2015) · Zbl 1330.35495 · doi:10.1007/s00526-015-0891-5
[10] Chen, C.; Fu, S., Infinitely many solutions to quasi-linear Schrödinger system in \(R^N\), Comput. Math. Appl., 71, 1417-1424 (2016) · Zbl 1443.35033 · doi:10.1016/j.camwa.2016.02.009
[11] D. G. Costa, On a class of elliptic systems in \(R^N\), Electron. J. Differential Equations, 1997, 1-14 (1994)
[12] Nezza, E. Di; Palatucci, G.; Valdinoci, E., Hitchhikers guide to the fractional sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[13] Felmer, P.; Quaas, A.; J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinb., 142, 1237-1262 (2012) · Zbl 1290.35308 · doi:10.1017/S0308210511000746
[14] Furtado, M. F.; Silva, E. A. B.; Xavier, M. S., Multiplicity and concentration of solutions for elliptic systems with vanishing potentials, J. Differential Equations, 249, 2377-2396 (2010) · Zbl 1202.35078 · doi:10.1016/j.jde.2010.08.002
[15] B. Ge, Multiple solutions of nonlinear Schrödinger equation with the fractional Laplacian, Nonlinear Anal. Real World Appl., 30, 236-247 (2016) · Zbl 1342.35333 · doi:10.1016/j.nonrwa.2016.01.003
[16] Guo, Q.; He, X., Least energy solutions for a weakly coupled fractional Schrödinger system, Nonlinear Anal., 132, 141-159 (2016) · Zbl 1330.35502 · doi:10.1016/j.na.2015.11.005
[17] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam (2006) · Zbl 1092.45003
[18] Kumar, D.; Singh, J.; Baleanu, D., fractional model of convective radial fins with temperature-dependent thermal conductivity, Rom. Rep. Phys., 2017, 1-13 (2017)
[19] Lakshmikantham, V.; Leela, S.; J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, Cambridge (2009) · Zbl 1188.37002
[20] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 298-305 (2000) · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[21] Laskin, N., Fractional Schrödinger equation, Phys. Rev. E, 2002, 1-7 (2002) · doi:10.1103/PhysRevE.66.056108
[22] Liu, J.-Q.; Liu, X.-Q.; Z.-Q; Wang, Multiple mixed states of nodal solutions for nonlinear Schrdinger systems, Calc. Var. Partial Differential Equations, 52, 565-586 (2015) · Zbl 1311.35291 · doi:10.1007/s00526-014-0724-y
[23] Lü, D.-F.; Q. Liu, Multiplicity of solutions for a class of quasilinear Schrödinger systems in \(R^N\), Comput. Math. Appl., 66, 2532-2544 (2014) · Zbl 1368.35248 · doi:10.1016/j.camwa.2013.09.015
[24] Muslih, S. I.; Agrawal, O. P.; Baleanu, D., A Fractional Schrödinger Equation and Its Solution, Int. J. Theoretical Phys., 49, 1746-1752 (2010) · Zbl 1197.81126 · doi:10.1007/s10773-010-0354-x
[25] Nouri, K.; Elahi-Mehr, S.; Torkzadeh, L., Investigation of the behavior of the fractional Bagley-Torvik and Basset equations via numerical inverse Laplace transform, Rom. Rep. Phys., 68, 503-514 (2016)
[26] I. Podlubny, Fractional differential equations, Academic Press, New York (1999) · Zbl 0918.34010
[27] Pucci, P.; Xiang, M. Q.; Zhang, B. L., Multiple solutions for nonhomogeneous Schrödinger Kirchhoff type equations involving the fractional p-Laplacian in \(R^N\), Calc. Var. Partial Differ. Equ., 54, 2785-2806 (2015) · Zbl 1329.35338 · doi:10.1007/s00526-015-0883-5
[28] Severo, U.; Silva, E., On the existence of standing wave solutions for a class of quasilinear Schrödinger systems, J. Math. Anal. Appl., 412, 763-775 (2014) · Zbl 1312.35078 · doi:10.1016/j.jmaa.2013.11.012
[29] Shang, X.-D.; Zhang, J.-H., Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27, 187-207 (2014) · Zbl 1287.35027 · doi:10.1088/0951-7715/27/2/187
[30] Tao, F.; Wu, X., Existence and multiplicity of positive solutions for fractional Schrödinger equations with critical growth, Nonlinear Anal. Real World Appl., 35, 158-174 (2017) · Zbl 1372.35346 · doi:10.1016/j.nonrwa.2016.10.007
[31] V. E. Tarasov, Fractional dynamics: application of fractional calculus to dynamics of particles, fields and media, Springer, New York (2011)
[32] Teng, K., Multiple solutions for a class of fractional Schrödinger equations in \(R^N\), Nonlinear Anal. Real World Appl., 21, 76-86 (2015) · Zbl 1302.35415 · doi:10.1016/j.nonrwa.2014.06.008
[33] Teng, K.; He, X., Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent, Commun. Pure Appl. Anal., 15, 991-1008 (2016) · Zbl 1334.35402 · doi:10.3934/cpaa.2016.15.991
[34] Willem, M., Minimax Theorems, Birkhäuser, Boston (1996) · Zbl 0856.49001
[35] Yang, X.-J.; Gao, F.; Srivastava, H. M., New rheological models within local fractional derivative, Rom. Rep. Phys., 2017, 1-12 (2017)
[36] Yang, L.; Z. Liu, Multiplicity and concentration of solutions for fractional Schrödinger equation with sublinear perturbation and steep potential well, Comput. Math. Appl., 72, 1629-1640 (2016) · Zbl 1365.35221 · doi:10.1016/j.camwa.2016.07.033
[37] Zhang, Y.; Baleanu, D.; Yang, X.-J., New solutions of the transport equations in porous media within local fractional derivative, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 17, 230-236 (2016)
[38] Zhang, X.; Zhang, B.; Repovš, D., Existence and symmetry of solutions for critical fractional Schrdinger equations with bounded potentials, Nonlinear Anal., 142, 48-68 (2016) · Zbl 1338.35013 · doi:10.1016/j.na.2016.04.012
[39] Zou, W., Variant fountain theorems and their applications, Manuscripta Math., 104, 343-358 (2001) · Zbl 0976.35026 · doi:10.1007/s002290170032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.