×

zbMATH — the first resource for mathematics

Three-dimensional modal analysis of an idealized human head including fluid-structure interaction effects. (English) Zbl 1356.74052
Summary: A three-dimensional analytical and numerical method is presented in this article for the analysis of the acoustic fluid-structure interaction systems including, but not limited to, the brain, cerebro-spinal fluid (CSF), and skull. The model considers a three-dimensional acoustic fluid medium interacting with two solid domains. This article deals with the analytical and numerical computation of eigenproperties for an idealized human head model including fluid-structure interaction phenomena. We determine in the present work the natural frequencies and the modes shapes of the system of the brain, cerebro-spinal fluid (CSF), and skull. Two models are presented in this study: an elastic skull model and a rigid model. In the analysis, a potential technique is used to obtain in three-dimensional cylindrical coordinates a general solution for a solid problem. A finite element method analysis is also used to check the validity of the present method. The results from the proposed method are in good agreement with numerical solutions. The effects of the fluid thickness and compressibility on the natural frequencies are also investigated.
MSC:
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L15 Biomechanical solid mechanics
76Z99 Biological fluid mechanics
92C99 Physiological, cellular and medical topics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. Dover, New York (1970) · Zbl 0171.38503
[2] Bathe K.J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs, NJ (1996) · Zbl 0994.74001
[3] Charalambopoulos A., Dassios G., Fotiadis D., Massalas C.: Frequency spectrum of the human head-neck system. Int. J. Eng. Sci. 35, 753–768 (1997) · Zbl 0903.73060 · doi:10.1016/S0020-7225(96)00121-8
[4] Charalambopoulos A., Fotiadis D.I., Ktena A., Massalas C.V.: The effect of viscoelastic brain on the dynamic characteristics of the human skull-brain system. Acta Mech. 130, 159–173 (1998) · Zbl 0928.74062 · doi:10.1007/BF01184308
[5] El Baroudi A., Razafimahery F., Rakotomanana L.: Parametric modal analysis of brain-Csf-skull system: influence of fluid-structure interaction. Eur. J. Comput. Mech. Numer. Models Biomech. 18/1, 55–66 (2009) · Zbl 1278.76135
[6] El Baroudi A., Razafimahery F., Rakotomanana L.: Analyse dynamique par projection modale d’un modèle 2D du système couplé crâne-LCR-cerveau. Mécanique Ind. 11, 235–243 (2010) · doi:10.1051/meca/2010061
[7] Gong S.W., Lee H.P., Lu C.: Computational simulation of the human head response to non-contact impact. Comput. Struct. 86, 758–770 (2008) · doi:10.1016/j.compstruc.2007.06.003
[8] Graff K.F.: Wave Motion in Elastic Solids. Dover Publication, New York (1975) · Zbl 0314.73022
[9] Hault-Dubrulle, A.: Towards a Better Understanding of Knowledge About Fluid/Structure Interaction Phenomena Inside the Head Subjected to a Dynamical Loading: Experimental and Numerical Studies. Université de Valenciennes et du Hainaut Cambrésis, 6 juillet (2007)
[10] Hamdi M.A., Ousset Y., Verchery G.: A displacement method for analysis of vibrations of coupled fluid-structure systems. Int. J. Numer. Methods Eng. 13, 139–150 (1978) · Zbl 0384.76060 · doi:10.1002/nme.1620130110
[11] Hiltunen J., Hari R., Jousmaki V., Mueller K.: Quantification of mechanical vibration during diffusion tensor imaging at 3 T. Neuro Image 32, 93–103 (2006)
[12] Ho J., Kleiven S.: Can sulci protect the brain from traumatic injury?. J. Biomech. 42, 2074–2080 (2009) · doi:10.1016/j.jbiomech.2009.06.051
[13] Kleiven S.: Finite Element Modeling of the Human Head. Royal Institute of Technology, Stockholm (2002)
[14] Marjoux D., Baumgartner D., Deck C., Willinger R.: Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accid. Anal. Prev. 40, 1135–1148 (2008) · doi:10.1016/j.aap.2007.12.006
[15] Mellado M., Rodriguez R.: Efficient solution of fluid-structure vibration problems. Appl. Numer. Math. 36, 389–400 (2001) · Zbl 1033.74046 · doi:10.1016/S0168-9274(00)00015-5
[16] Morse M., Feshbach H.: Methods of Theoretical Physics. McGraw-Hill, New York (1946) · Zbl 0061.30210
[17] Morse P.M., Ingard K.U.: Theoretical Acoustics. McGraw-Hill Book Company, New York (1968)
[18] Morand H., Ohayon R.: Substructure variational analysis of the vibrations of coupled fluid-structure systems: finite element results. Int. J. Numer. Methods Eng. 14, 741–755 (1979) · Zbl 0402.73052 · doi:10.1002/nme.1620140508
[19] Morand H., Ohayon R.: Fluid Structure Interaction. Wiley, New York (1995) · Zbl 0834.73002
[20] Morand H.J.P., Ohayon R.: Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results. Int. J. Numer. Methods Eng. 14, 741–755 (1979) · Zbl 0402.73052 · doi:10.1002/nme.1620140508
[21] Parthasarathi A.A., Grosh K., Nuttall A.L.: Three-dimensional numerical modeling for global cochlear dynamics. J. Acoust. Soc. Am. 107, 474–485 (2000) · doi:10.1121/1.428352
[22] Roth S., Vappou J., Raul J-S., Willinger R.: Child head injury criteria investigation through numerical simulation of real world trauma. Comput. Methods Programs Biomed. 93, 32–45 (2009) · Zbl 05517908 · doi:10.1016/j.cmpb.2008.08.001
[23] Verschuerena P., Delyeb H., Depreitere B., Van Lierde C., Haex B., Berckmans D., Verpoestd I., Goffin J., Vander J., Vander Perre G.: A new test set-up for skull fracture characterisation. J. Biomech. 40, 3389–3396 (2007) · doi:10.1016/j.jbiomech.2007.05.018
[24] Will U., Berg E.: Modal and Temporal analysis of Head Mathematical Models, pp. 265–276. Traumatic brain injury: bioscience and mechanics. Mary Ann Liebert Inc, Larchmont (1996)
[25] Will U., Berg E.: Brain wave synchronization and entrainment to periodic acoustic stimuli. Neurosci. Lett. 424, 55–60 (2007) · doi:10.1016/j.neulet.2007.07.036
[26] Yang B.: Stress, Strain, and Structural Dynamics. Elsevier Academic Press, Amsterdam (2005)
[27] Zienkiewich O.C., Taylor R.L.: The Finite Element Method, vol. 2. McGraw-Hill, New York (1989)
[28] Zonga Z., Leeb H.P., Lu C.: A three-dimensional human head finite element model and power flow in a human head subject to impact loading. J. Biomech. 39, 284–292 (2006) · doi:10.1016/j.jbiomech.2004.11.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.