×

zbMATH — the first resource for mathematics

A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries. (English) Zbl 1378.76081
Summary: The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for non-linear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form a preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the diagonal of the Jacobian further improves the performance by 42–74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal and full Jacobian, respectivley, when the stretching factor was increased. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80–90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
76Z05 Physiological flows
Software:
LSODE; mctoolbox
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Peskin, C.: Numerical analysis of blood flow in the heart. J. comput. Phys. 25, 220 (1977) · Zbl 0403.76100 · doi:10.1016/0021-9991(77)90100-0
[2] Peskin, C.; Mcqueen, D.: A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid. J. comput. Phys. 81, No. 2, 372-405 (1989) · Zbl 0668.76159 · doi:10.1016/0021-9991(89)90213-1
[3] Steinman, D. A.; Milner, J. S.; Norley, C. J.; Lownie, S. P.; Holdsworth, D. W.: Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am. J. Neuroradiol. 24, No. 4, 559-566 (2003)
[4] Castro, M. A.; Olivares, M. C. A.; Putman, C. M.; Cebral, J. R.: Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models. Med. biol. Eng. comput. 52, No. 10, 827-839 (2014)
[5] Chiastra, C.; Morlacchi, S.; Gallo, D.; Morbiducci, U.; Cárdenes, R.; Larrabide, I.; Migliavacca, F.: Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J. R. Soc. interface 10, No. 84, 20130193 (2013)
[6] Borazjani, I.: Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput. methods appl. Mech. eng. 257, No. 0, 103-116 (2013) · Zbl 1286.74030 · doi:10.1016/j.cma.2013.01.010
[7] Borazjani, I.; Westerdale, J.; Mcmahon, E.; Rajaraman, P. K.; Heys, J.; Belohlavek, M.: Left ventricular flow analysis: recent advances in numerical methods and applications in cardiac ultrasound. Comput. math. Methods med. 2013 (2013) · Zbl 1275.92040 · doi:10.1155/2013/395081
[8] Aono, H.; Liang, F.; Liu, H.: Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J. exp. Biol. 211, No. 2, 239-257 (2008)
[9] Nakata, T.; Liu, H.: A fluid-structure interaction model of insect flight with flexible wings. J. comput. Phys. 231, No. 4, 1822-1847 (2012) · Zbl 1377.76048
[10] Borazjani, I.; Sotiropoulos, F.; Malkiel, E.; Katz, J.: On the role of copepod antenna in the production of hydrodynamic force during hopping. J. exp. Biol. 213, 3019-3035 (2010)
[11] Borazjani, I.: The functional role of caudal and anal/dorsal fins during the C-start of a bluegill sunfish. J. exp. Biol. 216, 1658-1669 (2013)
[12] Borazjani, I.; Daghooghi, M.: The fish tail motion forms an attached leading edge vortex. Proc. R. Soc. B 280, 20122071 (2013) · Zbl 1359.76303
[13] Dong, H.; Bozkurttas, M.; Mittal, R.; Madden, P.; Lauder, G.: Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. fluid mech. 645, 345-373 (2010) · Zbl 1189.76814 · doi:10.1017/S0022112009992941
[14] Fogelson, A. L.; Peskin, C. S.: A fast numerical method for solving the three-dimensional Stokes equations in the presence of suspended particles. J. comput. Phys. 79, No. 1, 50-69 (1988) · Zbl 0652.76025 · doi:10.1016/0021-9991(88)90003-4
[15] Haddadi, H.; Morris, J. F.: Microstructure and rheology of finite inertia neutrally buoyant suspensions. J. fluid mech. 749, 431-459 (2014)
[16] Wu, J.; Aidun, C. K.: A method for direct simulation of flexible fiber suspensions using lattice Boltzmann equation with external boundary force. Int. J. Multiph. flow 36, No. 3, 202-209 (2010)
[17] Griffith, B. E.: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. methods biomed. Eng. 28, No. 3, 317-345 (2012) · Zbl 1243.92017 · doi:10.1002/cnm.1445
[18] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.; Vargas, A.; Von Loebbecke, A.: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. comput. Phys. 227, No. 10, 4825-4852 (2008) · Zbl 1388.76263
[19] Mangual, J. O.; Kraigher-Krainer, E.; De Luca, A.; Toncelli, L.; Shah, A.; Solomon, S.; Galanti, G.; Domenichini, F.; Pedrizzetti, G.: Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. J. biomech. 46, No. 10, 1611-1617 (2013)
[20] Domenichini, F.; Pedrizzetti, G.: Intraventricular vortex flow changes in the infarcted left ventricle: numerical results in an idealised 3D shape. Comput. methods biomech. Biomed. eng. 14, No. 01, 95-101 (2011)
[21] De Tullio, M.; Cristallo, A.; Balaras, E.; Verzicco, R.: Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. fluid mech. 622, 259-290 (2009) · Zbl 1165.76388 · doi:10.1017/S0022112008005156
[22] Tytell, E. D.; Hsu, C. -Y.; Williams, T. L.; Cohen, A. H.; Fauci, L. J.: Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proc. natl. Acad. sci. 107, No. 46, 19832-19837 (2010)
[23] Knoll, D. A.; Keyes, D. E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. comput. Phys. 193, No. 2, 357-397 (2004) · Zbl 1036.65045 · doi:10.1016/j.jcp.2003.08.010
[24] Anderson, D. G.: Iterative procedures for nonlinear integral equations. J. ACM 12, No. 4, 547-560 (1965) · Zbl 0149.11503 · doi:10.1145/321296.321305
[25] Breuer, M.; Hänel, D.: A dual time-stepping method for 3-d, viscous, incompressible vortex flows. Comput. fluids 22, No. 4, 467-484 (1993) · Zbl 0779.76049 · doi:10.1016/0045-7930(93)90020-A
[26] Kim, W. -W.; Menon, S.: An unsteady incompressible Navier-Stokes solver for large eddy simulation of turbulent flows. Int. J. Numer. methods fluids 31, No. 6, 983-1017 (1999) · Zbl 0964.76033 · doi:10.1002/(SICI)1097-0363(19991130)31:6<983::AID-FLD908>3.0.CO;2-Q
[27] Van Doormaal, J.; Raithby, G.: Enhancements of the simple method for predicting incompressible fluid flows. Numer. heat transf. 7, No. 2, 147-163 (1984) · Zbl 0553.76005 · doi:10.1080/01495728408961817
[28] Kim, S. -W.; Benson, T.: Comparison of the SMAC, PISO and iterative time-advancing schemes for unsteady flows. Comput. fluids 21, No. 3, 435-454 (1992) · Zbl 0825.76510 · doi:10.1016/0045-7930(92)90048-Z
[29] Tang, H.; Sotiropoulos, F.: Fractional step artificial compressibility schemes for the unsteady incompressible Navier-Stokes equations. Comput. fluids 36, No. 5, 974-986 (2007) · Zbl 1194.76186 · doi:10.1016/j.compfluid.2006.01.019
[30] Pletcher, R. H.; Tannehill, J. C.; Anderson, D.: Computational fluid mechanics and heat transfer. (2012) · Zbl 0569.76001
[31] Brown, P. N.; Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. stat. Comput. 11, No. 3, 450-481 (1990) · Zbl 0708.65049 · doi:10.1137/0911026
[32] Dembo, R. S.; Eisenstat, S. C.; Steihaug, T.: Inexact Newton methods. SIAM J. Numer. anal. 19, No. 2, 400-408 (1982) · Zbl 0478.65030 · doi:10.1137/0719025
[33] Chan, T. F.; Jackson, K. R.: Nonlinearly preconditioned Krylov subspace methods for discrete Newton algorithms. SIAM J. Sci. stat. Comput. 5, No. 3, 533-542 (1984) · Zbl 0574.65043 · doi:10.1137/0905039
[34] Knoll, D.; Mousseau, V.: On Newton-Krylov multigrid methods for the incompressible Navier-Stokes equations. J. comput. Phys. 163, No. 1, 262-267 (2000) · Zbl 0994.76055 · doi:10.1006/jcph.2000.6561
[35] Knoll, D.; Rider, W.: A multigrid preconditioned Newton-Krylov method. SIAM J. Sci. comput. 21, No. 2, 691-710 (1999) · Zbl 0952.65102 · doi:10.1137/S1064827598332709
[36] Pernice, M.; Tocci, M.: A multigrid-preconditioned Newton-Krylov method for the incompressible Navier-Stokes equations. SIAM J. Sci. comput. 23, No. 2, 398-418 (2001) · Zbl 0995.76061 · doi:10.1137/S1064827500372250
[37] Ge, L.; Sotiropoulos, F.: A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries. J. comput. Phys. 225, No. 2, 1782-1809 (2007) · Zbl 1213.76134 · doi:10.1016/j.jcp.2007.02.017
[38] Keyes, D. E.; Reynolds, D. R.; Woodward, C. S.: Implicit solvers for large-scale nonlinear problems. J. phys. Conf. ser. 46, 433 (2006)
[39] Eisenstat, S. C.; Walker, H. F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4, No. 2, 393-422 (1994) · Zbl 0814.65049 · doi:10.1137/0804022
[40] Dembo, R. S.; Eisenstat, S. C.; Steihaug, T.: Inexact Newton methods. SIAM J. Numer. anal. 19, No. 2, 400-408 (1982) · Zbl 0478.65030 · doi:10.1137/0719025
[41] Losch, M.; Fuchs, A.; Lemieux, J. -F.; Vanselow, A.: A parallel Jacobian-free Newton-Krylov solver for a coupled sea ice-ocean model. J. comput. Phys. 257, 901-911 (2014) · Zbl 1349.86008 · doi:10.1016/j.jcp.2013.09.026
[42] Chen, R.; Wu, Y.; Yan, Z.; Zhao, Y.; Cai, X. -C.: A parallel domain decomposition method for 3D unsteady incompressible flows at high Reynolds number. J. sci. Comput. 58, No. 2, 275-289 (2014) · Zbl 1298.76057 · doi:10.1007/s10915-013-9732-x
[43] Content, C.; Outtier, P. Y.; Cinnella, P.: Coupled/uncoupled solutions of RANS equations using a Jacobian-free Newton-Krylov method. (2013)
[44] Birken, P.; Gassner, G.; Haas, M.; Munz, C. -D.: Preconditioning for modal discontinuous Galerkin methods for unsteady 3D Navier-Stokes equations. J. comput. Phys. 240, 20-35 (2013) · Zbl 1426.76520
[45] Walker, H. F.: Implementation of the GMRES method using householder transformations. SIAM J. Sci. stat. Comput. 9, No. 1, 152-163 (1988) · Zbl 0698.65021 · doi:10.1137/0909010
[46] Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. comput. 14, No. 2, 461-469 (1993) · Zbl 0780.65022 · doi:10.1137/0914028
[47] Hestenes, M. R.; Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. res. Natl. bur. Stand. 14 (1952) · Zbl 0048.09901
[48] Reid, J. K.: On the method of conjugate gradients for the solution of large sparse systems of linear equations. Large sparse sets of linear equations (1971)
[49] Hovland, P. D.; Mcinnes, L. C.: Parallel simulation of compressible flow using automatic differentiation and PETSC. Parallel comput. 27, No. 4, 503-519 (2001) · Zbl 0972.68165 · doi:10.1016/S0167-8191(00)00074-0
[50] Hovland, P.; Mohammadi, B.; Bischof, C.: Automatic differentiation and Navier-Stokes computations. Computational methods for optimal design and control, 265-284 (1998) · Zbl 1041.76550
[51] Bramkamp, F.; Bücker, H.; Rasch, A.: Using exact Jacobians in an implicit Newton-Krylov method. Comput. fluids 35, No. 10, 1063-1073 (2006) · Zbl 1177.76213 · doi:10.1016/j.compfluid.2005.10.003
[52] Forth, S. A.; Tadjouddine, M.; Pryce, J. D.; Reid, J. K.: Jacobian code generated by source transformation and vertex elimination can be as efficient as hand-coding. ACM trans. Math. softw. 30, No. 3, 266-299 (2004) · Zbl 1073.65020 · doi:10.1145/1024074.1024076
[53] Briley, W.; Mcdonald, H.: Solution of the three-dimensional compressible Navier-Stokes equations by an implicit technique. Proceedings of the fourth international conference on numerical methods in fluid dynamics, 105-110 (1975) · Zbl 0334.76036
[54] Beam, R. M.; Warming, R. F.: An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. J. comput. Phys. 22, No. 1, 87-110 (1976) · Zbl 0336.76021 · doi:10.1016/0021-9991(76)90110-8
[55] Beam, R. M.; Warming, R.: An implicit factored scheme for the compressible Navier-Stokes equations. Aiaa j. 16, No. 4, 393-402 (1978) · Zbl 0374.76025 · doi:10.2514/3.60901
[56] Steger, J. L.: Implicit finite difference simulation of flow about arbitrary geometries with application to airfoils. 10th conference on fluid and plasmadynamics (1977)
[57] Pulliam, T. H.; Steger, J. L.: Implicit finite-difference simulations of three-dimensional compressible flow. Aiaa j. 18, No. 2, 159-167 (1980) · Zbl 0417.76039 · doi:10.2514/3.50745
[58] Pulliam, T. H.; Chaussee, D.: A diagonal form of an implicit approximate-factorization algorithm. J. comput. Phys. 39, No. 2, 347-363 (1981) · Zbl 0472.76068 · doi:10.1016/0021-9991(81)90156-X
[59] Hoffmann, K. A.; Chiang, S. T.: Computational fluid dynamics, vol. 1. (2000)
[60] Batten, P.; Leschziner, M.; Goldberg, U.: Average-state Jacobians and implicit methods for compressible viscous and turbulent flows. J. comput. Phys. 137, No. 1, 38-78 (1997) · Zbl 0901.76043 · doi:10.1006/jcph.1997.5793
[61] T. Barth, Analysis of implicit local linearization techniques for upwind and TVD algorithms, 1987, http://dx.doi.org/10.2514/6.1987-595.
[62] Gilmanov, A.; Sotiropoulos, F.: A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J. comput. Phys. 207, No. 2, 457-492 (2005) · Zbl 1213.76135 · doi:10.1016/j.jcp.2005.01.020
[63] Borazjani, I.; Ge, L.; Sotiropoulos, F.: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. comput. Phys. 227, No. 16, 7587-7620 (2008) · Zbl 1213.76129 · doi:10.1016/j.jcp.2008.04.028
[64] Borazjani, I.; Ge, L.; Le, T.; Sotiropoulos, F.: A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows. Comput. fluids 77, 76-96 (2013) · Zbl 1284.76262 · doi:10.1016/j.compfluid.2013.02.017
[65] Mousseau, V.; Knoll, D.; Reisner, J.: An implicit nonlinearly consistent method for the two-dimensional shallow-water equations with Coriolis force. Mon. weather rev. 130, No. 11, 2611-2625 (2002)
[66] Knoll, D.; Mchugh, P.: Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow. SIAM J. Sci. comput. 19, No. 1, 291-301 (1998) · Zbl 0913.76067 · doi:10.1137/S1064827596304034
[67] Luo, H.; Baum, J. D.; Löhner, R.: A fast, matrix-free implicit method for compressible flows on unstructured grids. J. comput. Phys. 146, No. 2, 664-690 (1998) · Zbl 0931.76045 · doi:10.1006/jcph.1998.6076
[68] Liu, F.; Ji, S.: Unsteady flow calculations with a multigrid Navier-Stokes method. Aiaa j. 34, No. 10, 2047-2053 (1996) · Zbl 0904.76059 · doi:10.2514/3.13351
[69] Liu, F.; Cai, J.; Zhu, Y.; Tsai, H.; Wong, A. F.: Calculation of wing flutter by a coupled fluid-structure method. J. aircr. 38, No. 2, 334-342 (2001)
[70] Yusuf, M. W.; Leong, W. J.; Hassan, M. Abu; Monsi, M.: A new Newton’s method with diagonal Jacobian approximation for systems of nonlinear equations. J. math. Stat. 6, No. 3, 246-252 (2010) · Zbl 1205.65182 · doi:10.3844/jmssp.2010.246.252 · scipub.org
[71] Wright, M. J.; Candler, G. V.; Prampolini, M.: Data-parallel lower-upper relaxation method for the Navier-Stokes equations. Aiaa j. 34, No. 7, 1371-1377 (1996) · Zbl 0902.76084 · doi:10.2514/3.13242
[72] Radhakrishnan, K.; Hindmarsh, A. C.: Description and use of LSODE, the livermore solver for ordinary differential equations. (1993)
[73] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; Mcinnes, L. C.; Rupp, K.; Smith, B. F.; Zhang, H.: Petsc web page. (2014)
[74] Axelsson, O.: Iterative solution methods. (1996) · Zbl 0845.65011 · doi:10.1017/CBO9780511624100
[75] Borazjani, I.; Sotiropoulos, F.: Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. exp. Biol. 211, No. 10, 1541-1558 (2008)
[76] Chorin, A. J.: Numerical solution of the Navier-Stokes equations. Math. comput. 22, No. 104, 745-762 (1968) · Zbl 0198.50103 · doi:10.2307/2004575
[77] Kim, J.; Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. comput. Phys. 59, No. 2, 308-323 (1985) · Zbl 0582.76038 · doi:10.1016/0021-9991(85)90148-2
[78] Dütsch, H.; Durst, F.; Becker, S.; Lienhart, H.: Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. J. fluid mech. 360, 249-271 (1998) · Zbl 0922.76024 · doi:10.1017/S002211209800860X
[79] Rindt, C.; Van Steenhoven, A.; Janssen, J.; Vossers, G.: Unsteady entrance flow in a 90 curved tube. J. fluid mech. 226, 445-474 (1991)
[80] Bovendeerd, P.; Van Steenhoven, A.; Van De Vosse, F.; Vossers, G.: Steady entry flow in a curved pipe. J. fluid mech. 177, 233-246 (1987)
[81] Saad, Y.: Numerical methods for large eigenvalue problems. 158 (1992) · Zbl 0991.65039
[82] You, D.; Mittal, R.; Wang, M.; Moin, P.: Analysis of stability and accuracy of finite-difference schemes on a skewed mesh. J. comput. Phys. 213, No. 1, 184-204 (2006) · Zbl 1146.76626 · doi:10.1016/j.jcp.2005.08.007
[83] Higham, N. J.: Accuracy and stability of numerical algorithms. (2002) · Zbl 1011.65010 · doi:10.1137/1.9780898718027
[84] Busquets-Mataix, J. V.; Serrano, J. J.; Ors, R.; Gil, P.; Wellings, A.: Adding instruction cache effect to schedulability analysis of preemptive real-time systems. Real-time technology and applications symposium, 1996, Proceedings, 204-212 (1996)
[85] Xiang, J.; Natarajan, S. K.; Tremmel, M.; Ma, D.; Mocco, J.; Hopkins, L. N.; Siddiqui, A. H.; Levy, E. I.; Meng, H.: Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42, No. 1, 144-152 (2011)
[86] Oka, S.; Nakai, M.: Optimality principle in vascular bifurcation. Biorheology 24, No. 6, 737-751 (1986)
[87] Xiang, J.; Siddiqui, A.; Meng, H.: The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms. J. biomech. 47, 3882-3890 (2014)
[88] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T. E.: Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput. mech. 38, No. 4-5, 482-490 (2006) · Zbl 1160.76061 · doi:10.1007/s00466-006-0065-6
[89] Ekici, K.; Lyrintzis, A. S.: Short communication: a parallel Newton-Krylov method for Navier-Stokes rotorcraft codes. Int. J. Comput. fluid dyn. 17, No. 3, 225-230 (2003) · Zbl 1161.76553 · doi:10.1080/1061856031000123599
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.