×

zbMATH — the first resource for mathematics

Numerical prediction of turbulent bubbly two-phase flow in a rotating complicated duct. (English) Zbl 0944.76044
Summary: A fully three-dimensional numerical procedure based on the two-fluid model in a general curvilinear coordinate system is proposed for the prediction of developing turbulent bubbly two-phase flow in a rotating complicated duct. A Coriolis-modified turbulence model is extended to two-phase flows to account for the rotational effect on the lateral phase distribution. The governing equations are solved using a finite volume method with a non-staggered variable arrangement. Comparisons of the predictions with measured pressure and void fractions show good agreement.
MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows
76U05 General theory of rotating fluids
76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Minemura, J. Fluids Eng. 115 pp 766– (1993) · doi:10.1115/1.2910210
[2] and , ’Distributions of velocity and void fractions in a radial flow pump impeller handling air-water two-phase mixtures’, Proc. Cavitation and Multiphase Flow Forum, ASME, Atlanta, USA, 1986, pp. 35-38.
[3] and , ’Numerical prediction of bubble flow in a centrifugal pump’, Advances in Multiphase Flow, Elsevier, Amsterdam, 1985, pp. 175-181.
[4] Gosman, AIChE J. 38 pp 1946– (1992) · doi:10.1002/aic.690381210
[5] and , ’Investigations into the two-phase flow behavior of centrifugal pumps’, Proc. of Polyphase Flow in Turbomachinery, ASME, 1978, pp. 79-100.
[6] Millemura, Int. J. Multiphase Flow 19 pp 439– (1993) · Zbl 1144.76422 · doi:10.1016/0301-9322(93)90059-4
[7] Uchiyama, Trans. Jpn. Soc. Mech. Eng. 60B pp 2967– (1994) · doi:10.1299/kikaib.60.2967
[8] Minemura, Trans. Jpn. Soc. Mech. Eng. 62B pp 3784– (1996) · doi:10.1299/kikaib.62.3784
[9] and , ’Effects of turbulence on the phase distribution for developing two-phase flow in a rotating square-sectioned duct’, Proc. JSME Centennial Congress, Int. Conf. on Fluid Eng. Tokyo, 1997, pp. 473-478.
[10] Lee, Jpn. J. Multiphase Flow 3 pp 335– (1989) · doi:10.3811/jjmf.3.335
[11] Lopez de Bertodano, J. Fluids Eng. 112 pp 107– (1990) · doi:10.1115/1.2909357
[12] Lopez de Bertodano, Int. J. Multiphase Flow 20 pp 805– (1994) · Zbl 1134.76524 · doi:10.1016/0301-9322(94)90095-7
[13] Lopez de Bertodano, J. Fluids Eng. 116 pp 128– (1994) · doi:10.1115/1.2910220
[14] Howard, J. Fluids Eng. 102 pp 456– (1980) · doi:10.1115/1.3240725
[15] Rhie, AIAA J. 21 pp 1525– (1983) · Zbl 0528.76044 · doi:10.2514/3.8284
[16] Majumdar, Numer. Heat Transf. 13 pp 125– (1988) · doi:10.1080/10407788808913607
[17] ’Mathematical methods in nuclear-reactor thermal hydraulics’, Proc. of American Nuclear Reactor Thermal Hydraulics, Saratogu, New York, 1980.
[18] Ishii, AIChE J. 25 pp 843– (1979) · doi:10.1002/aic.690250513
[19] Drew, Int. J. Multiphase Flow 13 pp 113– (1987) · Zbl 0627.76014 · doi:10.1016/0301-9322(87)90011-5
[20] Lance, J. Fluid Mech. 22 pp 95– (1991) · doi:10.1017/S0022112091001015
[21] Serizawa, Int. J. Multiphase Flow 2 pp 235– (1975) · doi:10.1016/0301-9322(75)90012-9
[22] Ohba, Trans. Jpn. Soc. Mech. Eng. 48B pp 78– (1982) · doi:10.1299/kikaib.48.78
[23] Issa, Comput. Fluids 23 pp 347– (1994) · Zbl 0800.76329 · doi:10.1016/0045-7930(94)90045-0
[24] Wang, Int. J. Multiphase Flow 13 pp 327– (1987) · doi:10.1016/0301-9322(87)90052-8
[25] Shyy, AIAA J. 30 pp 923– (1992) · Zbl 0756.76053 · doi:10.2514/3.11010
[26] ’A finite volume method for the prediction of three-dimensional fluid flow in complex ducts’, Ph.D. Thesis, Mechanical Engineering Department, Imperial College, London, 1985.
[27] Marie, Int. J. Multiphase Flow 13 pp 309– (1987) · Zbl 0621.76063 · doi:10.1016/0301-9322(87)90051-6
[28] Zuber, J. Heat Transf. 87 pp 453– (1965) · doi:10.1115/1.3689137
[29] and , ’Numerical prediction of developing turbulent flow in a curved rotating pipe’, Proc. 5th Asian International Conference on Fluid Machinery, Seoul, South Korea, 1987, pp. 639-646.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.