×

zbMATH — the first resource for mathematics

Dynamics of nearly spherical bubbles in a turbulent channel upflow. (English) Zbl 1294.76252
Summary: The dynamics of bubbles in upflow, in a vertical channel, is examined using direct numerical simulations (DNS), where both the flow and the bubbles are fully resolved. Two cases are simulated. In one case all the bubbles are of the same size and sufficiently small so they remain nearly spherical. In the second case, some of the small bubbles are coalesced into one large bubble. In both cases lift forces drive small bubbles to the wall, removing bubbles from the channel interior until the two-phase mixture is in hydrostatic equilibrium, and forming a bubble-rich wall layer. The same evolution has been seen in earlier DNS of bubbly upflows, but here the friction Reynolds number is higher \((Re^{+} = 250)\). In addition to showing that the overall structure persists at higher Reynolds numbers, we show that the bubbles in the wall layer form clusters. The mechanism responsible for the clustering is explained and how bubbles move into and out of the wall layer is examined. The dynamics of the bubbles in the channel core is also compared with results obtained in fully periodic domains and found to be similar. The presence of the large bubble disrupts the wall layer slightly, but does not change the overall picture much, for the parameters examined here.

MSC:
76T10 Liquid-gas two-phase flows, bubbly flows
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.2353399 · doi:10.1063/1.2353399
[2] DOI: 10.1063/1.2911034 · Zbl 1182.76476 · doi:10.1063/1.2911034
[3] DOI: 10.1016/j.ijmultiphaseflow.2006.02.003 · Zbl 1136.76567 · doi:10.1016/j.ijmultiphaseflow.2006.02.003
[4] DOI: 10.1016/0301-9322(94)90095-7 · Zbl 1134.76524 · doi:10.1016/0301-9322(94)90095-7
[5] Trans. ASME: J. Fluids Engng 13 pp 327– (1987)
[6] DOI: 10.1016/S0017-9310(05)80289-3 · doi:10.1016/S0017-9310(05)80289-3
[7] DOI: 10.1016/S0301-9322(97)00030-X · Zbl 1135.76479 · doi:10.1016/S0301-9322(97)00030-X
[8] DOI: 10.1002/(SICI)1097-0363(19970330)24:6&lt;579::AID-FLD510&gt;3.0.CO;2-E · Zbl 0889.76048 · doi:10.1002/(SICI)1097-0363(19970330)24:6<579::AID-FLD510>3.0.CO;2-E
[9] Intl J. Multiphase Flow 12 pp 745– (1989)
[10] DOI: 10.1016/S0301-9322(98)00040-8 · Zbl 1137.76628 · doi:10.1016/S0301-9322(98)00040-8
[11] DOI: 10.1063/1.868122 · Zbl 0836.76094 · doi:10.1063/1.868122
[12] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[13] Thermo-fluid Dynamic Theory of Two-phase Flows (1975)
[14] DOI: 10.1016/0301-9322(87)90052-8 · doi:10.1016/0301-9322(87)90052-8
[15] DOI: 10.1016/j.jcp.2006.08.008 · Zbl 1158.76404 · doi:10.1016/j.jcp.2006.08.008
[16] DOI: 10.1016/0021-9991(92)90307-K · Zbl 0758.76047 · doi:10.1016/0021-9991(92)90307-K
[17] DOI: 10.1016/j.jcp.2003.10.032 · Zbl 1109.76383 · doi:10.1016/j.jcp.2003.10.032
[18] Direct Numerical Simulations of Gas-Liquid Multiphase Flow (2011)
[19] DOI: 10.1016/j.ces.2004.03.036 · doi:10.1016/j.ces.2004.03.036
[20] DOI: 10.1006/jcph.2001.6726 · Zbl 1047.76574 · doi:10.1006/jcph.2001.6726
[21] DOI: 10.1002/aic.10444 · doi:10.1002/aic.10444
[22] DOI: 10.1016/S0009-2509(02)00085-4 · doi:10.1016/S0009-2509(02)00085-4
[23] J. Fluid Mech. 611 pp 107– (2008)
[24] DOI: 10.1098/rsta.2008.0023 · doi:10.1098/rsta.2008.0023
[25] The Expanding World of Chemical Engineering (2001)
[26] DOI: 10.1063/1.2055487 · Zbl 1187.76156 · doi:10.1063/1.2055487
[27] DOI: 10.1007/s00348-002-0459-y · doi:10.1007/s00348-002-0459-y
[28] DOI: 10.1063/1.2056617 · Zbl 1187.76142 · doi:10.1063/1.2056617
[29] DOI: 10.1002/aic.10607 · doi:10.1002/aic.10607
[30] DOI: 10.1016/j.ces.2007.02.012 · doi:10.1016/j.ces.2007.02.012
[31] DOI: 10.1016/0301-9322(75)90013-0 · doi:10.1016/0301-9322(75)90013-0
[32] DOI: 10.1146/annurev-fluid-122109-160756 · Zbl 1299.76277 · doi:10.1146/annurev-fluid-122109-160756
[33] DOI: 10.1023/A:1021765605698 · Zbl 1093.76550 · doi:10.1023/A:1021765605698
[34] DOI: 10.1016/j.ijmultiphaseflow.2004.04.008 · Zbl 1201.76275 · doi:10.1016/j.ijmultiphaseflow.2004.04.008
[35] DOI: 10.1017/S0022112003006293 · Zbl 1085.76067 · doi:10.1017/S0022112003006293
[36] DOI: 10.1017/S0022112099004310 · Zbl 0945.76087 · doi:10.1017/S0022112099004310
[37] DOI: 10.1016/0301-9322(75)90012-9 · doi:10.1016/0301-9322(75)90012-9
[38] J. Fluid Mech. 466 pp 53– (2002)
[39] DOI: 10.1017/S0022112098003176 · Zbl 0934.76090 · doi:10.1017/S0022112098003176
[40] Computational Methods for Multiphase Flow (2007)
[41] J. Fluid Mech. 466 pp 17– (2002)
[42] DOI: 10.1115/1.2819153 · doi:10.1115/1.2819153
[43] DOI: 10.1016/S0301-9322(03)00065-X · Zbl 1136.76611 · doi:10.1016/S0301-9322(03)00065-X
[44] DOI: 10.1016/j.ijmultiphaseflow.2011.03.002 · doi:10.1016/j.ijmultiphaseflow.2011.03.002
[45] Theory of Multicomponent Fluids (1999)
[46] DOI: 10.1115/1.2817389 · doi:10.1115/1.2817389
[47] DOI: 10.1016/j.ijmultiphaseflow.2007.06.006 · doi:10.1016/j.ijmultiphaseflow.2007.06.006
[48] Roco, Particulate Two-phase Flow pp 509– (1993)
[49] DOI: 10.1016/j.jcp.2005.10.024 · Zbl 1136.76410 · doi:10.1016/j.jcp.2005.10.024
[50] DOI: 10.1016/S0009-2509(03)00239-2 · doi:10.1016/S0009-2509(03)00239-2
[51] DOI: 10.1016/j.ces.2009.10.022 · doi:10.1016/j.ces.2009.10.022
[52] DOI: 10.1016/j.ijmultiphaseflow.2012.01.010 · doi:10.1016/j.ijmultiphaseflow.2012.01.010
[53] Intl J. Multiphase Flow 15 pp 635– (1991)
[54] DOI: 10.1016/j.ces.2009.10.021 · doi:10.1016/j.ces.2009.10.021
[55] DOI: 10.1016/j.ijmultiphaseflow.2012.02.012 · doi:10.1016/j.ijmultiphaseflow.2012.02.012
[56] DOI: 10.1007/s00348-008-0484-6 · doi:10.1007/s00348-008-0484-6
[57] J. Braz. Soc. Mech. Sci. Engng 26 pp 308– (2004)
[58] Bubble Column Reactors (1992)
[59] DOI: 10.1063/1.2033547 · Zbl 1187.76323 · doi:10.1063/1.2033547
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.