×

zbMATH — the first resource for mathematics

Progress in the second-moment closure for bubbly flow based on direct numerical simulation data. (English) Zbl 1430.76455
Summary: Data from direct numerical simulations (DNS) of disperse bubbly flow in an upward vertical channel are used to develop a new second-moment closure for bubble-induced turbulence (BIT) in the Euler-Euler framework. The closure is an extension of a BIT model originally proposed by T. Ma et al. [“Direct numerical simulation-based Reynolds-averaged closure for bubble-induced turbulence”, Phys. Rev. Fluids 2, No. 3, Article ID 034301, 11 p. (2017; doi:10.1103/PhysRevFluids.2.034301)] for two-equation eddy-viscosity models and focuses on the core region of the channel, where the interfacial term and dissipation term are in balance. Particular attention in this study is given to the treatment of the pressure-strain term for bubbly flows and the form of the interfacial term to account for BIT. For the latter, the concept of an effective BIT source is proposed, which leads to a significant simplification of the modelling work for both the pressure-strain correlation and the interfacial term itself. The anisotropy of bubbly flow is analysed with the aid of the anisotropy-invariant map obtained from the DNS data, and a parameter governing this issue is established. The complete second-moment closure is tested against reference data for different bubbly channel flows and a case of a bubble column. The agreement achieved with the DNS data is very good and the performance of the new model is better than obtained with the standard procedure. Furthermore, the model is shown to be robust and to fulfil the requirements of realizability.

MSC:
76T10 Liquid-gas two-phase flows, bubbly flows
76F05 Isotropic turbulence; homogeneous turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akbar, M. H. M., Hayashi, K., Hosokawa, S. & Tomiyama, A.2012Bubble tracking simulation of bubble-induced pseudo turbulence. Multiphase Sci. Technol.24, 197-222.
[2] Antal, S. P., Lahey, R. T. & Flaherty, J. E.1991Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Intl J. Multiphase Flow17, 635. · Zbl 1134.76479
[3] Auton, T. R.1987The lift force on a spherical body in a rotational flow. J. Fluid Mech.183, 199-218. · Zbl 0634.76021
[4] Bagchi, P. & Balachandar, S.2004Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech.518, 95-123. · Zbl 1131.76324
[5] Balachandar, S. & Eaton, J. K.2010Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech.42, 111-133.
[6] Barth, T. & Jesperson, D.1989The design and application of upwind schemes on unstructured meshes. AIAA Paper89, 0366.
[7] Biesheuvel, A. & Van Wijngaarden, L.1984Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J. Fluid Mech.148, 301-318. · Zbl 0585.76153
[8] Bolotnov, I., Jansen, K., Drew, D., Oberai, A., Lahey, R. & Podowski, M.2011Detached direct numerical simulations of turbulent two-phase bubbly channel flow. Intl J. Multiphase Flow37 (6), 647-659.
[9] Burns, A., Frank, T., Hamill, I. & Shi, J.-M.2004The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows. In 5th International Conference on Multiphase Flow, Yokohama, Japan, Paper No. 392. ICMF.
[10] Cifani, P., Kuerten, J. G. M. & Geurts, B. J.2018Highly scalable DNS solver for turbulent bubble-laden channel flow. Comput. Fluids172, 67-83. · Zbl 1410.76082
[11] Du Cluzeau, A., Bois, G. & Toutant, A.2019Analysis and modelling of Reynolds stresses in turbulent bubbly up-flows from direct numerical simulations. J. Fluid Mech.866, 132-168. · Zbl 1415.76630
[12] Cokljat, D., Slack, M., Vasquez, S. A., Bakker, A. & Montante, G.2006Reynolds-stress model for Eulerian multiphase. Prog. Comput. Fluid Dyn. Intl J.6, 168-178. · Zbl 1189.76687
[13] Colombo, M. & Fairweather, M.2015Multiphase turbulence in bubbly flows: RANS simulations. Intl J. Multiphase Flow77, 222-243.
[14] Dabiri, S., Lu, J. & Tryggvason, G.2013Transition between regimes of a vertical channel bubbly upflow due to bubble deformability. Phys. Fluids25, 102110.
[15] Deen, N. G., Solberg, T. & Hjertager, B. H.2001Large eddy simulation of the gas–liquid flow in a square cross-sectioned bubble column. Chem. Engng Sci.56, 6341-6349.
[16] Elghobashi, S.2019Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech.51 (1), 217-244. · Zbl 1412.76046
[17] Erdogan, S. & Wörner, M.2014Analysis and modelling of liquid phase turbulence kinetic energy equation in bubbly flows via direct numerical simulation. In 2nd International Symposium on Multiscale Multiphase Process Engineering, Hamburg, September 24-27. MMPE.
[18] Ern, P., Risso, F., Fabre, D. & Magnaudet, J.2012Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech.44, 97-121. · Zbl 1355.76019
[19] Fu, S., Launder, B. E. & Tselepidakis, D. P.1987Accommodating the effects of high strain rates in modelling the pressurestrain correlation. In Thermofluids Report TFD/87/5, UMIST, Manchester.
[20] Gibson, M. M. & Launder, B. E.1978Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech.86 (3), 491-511. · Zbl 0377.76062
[21] Hanjalić, K. & Jakirlić, S.2002Second-moment turbulence closure modelling. In Closure Strategies for Turbulent and Transitional Flows (ed. Launder, B. E. & Sandham, N. H.), pp. 47-101. Cambridge University Press.
[22] Hanjalić, K. & Launder, B.2011Modelling Turbulence in Engineering and the Environment. Cambridge University Press.
[23] Hanjalić, K. & Launder, B. E.1976Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence. J. Fluid Mech.74 (4), 593-610. · Zbl 0325.76067
[24] Horowitz, M. & Williamson, C. H. K.2010The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. J. Fluid Mech.651, 251-294. · Zbl 1189.76152
[25] Ilić, M.2006 Statistical analysis of liquid phase turbulence based on direct numerical simulations of bubbly flows. PhD thesis, Forschungszentrum Karlsruhe, Germany.
[26] Ishii, M. & Hibiki, T.2006Thermo-fluid Dynamics of Two-phase Flow. Springer. · Zbl 1204.76002
[27] Jakirlić, S. & Hanjalić, K.2002A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech.459, 139-166.
[28] Jakirlić, S. & Hanjalić, K.2013A direct numerical simulation-based re-examination of coefficients in the pressure strain models in second-moment closures. Fluid Dyn. Res.45, 055509.
[29] Johansson, A. V. & Hallbäck, M.1994Modelling of rapid pressure strain in Reynolds-stress closures. J. Fluid Mech.269, 143-168. · Zbl 0809.76044
[30] Jones, W. P. & Launder, B. E.1972The prediction of laminarization with a two-equation model of turbulence. Intl J. Heat Mass Transfer15, 301-314.
[31] Joshi, J. B. & Nandakumar, K.2015Computational modeling of multiphase reactors. Annu. Rev. Chem. Biomol.6 (1), 347-378.
[32] Kataoka, I., Besnard, D. C. & Serizawa, A.1992Basic equation of turbulence and modeling of interfacial transfer terms in gas–liquid two-phase flow. Chem. Engng Commun.118, 221-236.
[33] Kataoka, I. & Serizawa, A.1989Basic equations of turbulence in gas–liquid two-phase flow. Intl J. Multiphase Flow15, 843-855. · Zbl 0684.76054
[34] Kenjereš, S., Hanjalić, K. & Bal, D.2004A direct-numerical-simulation-based second-moment closure for turbulent magnetohydrodynamic flows. Phys. Fluids16, 1229-1241.
[35] Kim, J., Moin, P. & Moser, R.1987Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.177, 133-166. · Zbl 0616.76071
[36] Lai, C. C. K. & Socolofsky, S. A.2019The turbulent kinetic energy budget in a bubble plume. J. Fluid Mech.865, 993-1041.
[37] Launder, B. E.1975On the effects of a gravitational field on the turbulent transport of heat and momentum. J. Fluid Mech.67 (3), 569-581.
[38] Launder, B. E. & Li, S. P.1994On the elimination of wall-topography parameters from second-moment closure. Phys. Fluids6 (2), 999-1006. · Zbl 0825.76331
[39] Launder, B. E., Reece, G. J. & Rodi, W.1975Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech.68, 537-566. · Zbl 0301.76030
[40] Launder, B. E., Tselepidakis, D. P. & Younis, B. A.1987A second-moment closure study of rotating channel flow. J. Fluid Mech.183, 63-75. · Zbl 0634.76062
[41] Liao, Y., Ma, T., Krepper, E., Lucas, D. & Fröhlich, J.2019Application of a novel model for bubble-induced turbulence to bubbly flows in containers and vertical pipes. Chem. Engng Sci.202, 55-69.
[42] Liao, Y., Ma, T., Liu, L., Ziegenhein, T., Krepper, E. & Lucas, D.2018Eulerian modelling of turbulent bubbly flow based on a baseline closure concept. Nucl. Engng Des.337, 450-459.
[43] Lopez De Bertodano, M., Lahey, R. T. & Jones, O. C.1994Development of a k-epsilon model for bubbly two-phase flow. Trans ASME J. Fluids Engng116, 128. · Zbl 1134.76524
[44] Lopez De Bertodano, M., Lee, S.-J., Lahey, R. T. & Drew, D. A.1990The prediction of two-phase turbulence and phase distribution phenomena using a Reynolds stress model. Trans ASME J. Fluids Engng112, 107.
[45] Lu, J. & Tryggvason, G.2008Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Phys. Fluids20, 040701. · Zbl 1182.76476
[46] Lu, J. & Tryggvason, G.2013Dynamics of nearly spherical bubbles in a turbulent channel upflow. J. Fluid Mech.732, 166-189. · Zbl 1294.76252
[47] Lumley, J. L.1978Computational modeling of turbulent flows. Adv. Appl. Mech.18, 123-176. · Zbl 0472.76052
[48] Lumley, J. L. & Newman, G. R.1977The return to isotropy of homogeneous turbulence. J. Fluid Mech.82 (1), 161-178. · Zbl 0368.76055
[49] Ma, T.2017 A contribution to turbulence modelling in bubbly flows. PhD thesis, Institute of Fluid Mechanics, Technische Universität Dresden, TUDpress, Dresden.
[50] Ma, T., Lucas, D., Ziegenhein, T., Fröhlich, J. & Deen, N. G.2015aScale-adaptive simulation of a square cross-sectional bubble column. Chem. Engng Sci.131, 101-108.
[51] Ma, T., Santarelli, C., Ziegenhein, T., Lucas, D. & Fröhlich, J.2017Direct numerical simulation-based Reynolds-averaged closure for bubble-induced turbulence. Phys. Rev. Fluids2, 034301.
[52] Ma, T., Ziegenhein, T., Lucas, D., Krepper, E. & Fröhlich, J.2015bEuler-Euler large eddy simulations for dispersed turbulent bubbly flows. Intl J. Heat Fluid Flow56, 51-59.
[53] Masood, R. M. A., Rauh, C. & Delgado, A.2014CFD simulation of bubble column flows: An explicit algebraic Reynolds stress model approach. Intl J. Multiphase Flow66, 11-25.
[54] Michaelides, E., Crowe, C. & Schwarzkopf, J.2016Multiphase Flow Handbook, 2nd edn. CRC Press.
[55] Morel, C.1997 Turbulence modeling and first numerical simulations in turbulent two-phase flows. Tech. Rep. CEA/Grenoble, France.
[56] Naot, D., Shavit, A. & Wolfshtein, M.1970Interaction between components of the turbulent velocity correlation tensor due to pressure fluctuations. Israel J. Technol.8, 259-269. · Zbl 0225.76031
[57] Niceno, B., Dhotre, M. T. & Deen, N. G.2008One-equation sub-grid scale (SGS) modelling for Euler-Euler large eddy simulation (EELES) of dispersed bubbly flow. Chem. Engng Sci.63, 3923-3931.
[58] Politano, M. S., Carrica, P. M. & Converti, J.2003A model for turbulent polydisperse two-phase flow in vertical channels. Intl J. Multiphase Flow29, 1153-1182. · Zbl 1136.76611
[59] Pope, S. B.2000Turbulent Flows, 1st edn. Cambridge University Press. · Zbl 0966.76002
[60] Riboux, G., Risso, F. & Legendre, D.2010Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech.643, 509-539. · Zbl 1189.76038
[61] Rind, E. & Castro, I. P.2012Direct numerical simulation of axisymmetric wakes embedded in turbulence. J. Fluid Mech.710, 482-504. · Zbl 1275.76128
[62] Risso, F. & Ellingsen, K.2002Velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles. J. Fluid Mech.453, 395-410. · Zbl 0987.76505
[63] Ristorcelli, J. R., Lumley, J. L. & Abid, R.1995A rapid-pressure covariance representation consistent with the Taylor-Proudman theorem materially frame indifferent in the two-dimensional limit. J. Fluid Mech.292, 111-152. · Zbl 0843.76041
[64] Rodi, W. & Mansour, N. N.1993Low Reynolds number k-epsilon modelling with the aid of direct simulation data. J. Fluid Mech.250, 509-529. · Zbl 0775.76067
[65] Roghair, I., Mercado, J. M., Van Sint Annaland, M., Kuipers, H., Sun, C. & Lohse, D.2011Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations versus experiments. Intl J. Multiphase Flow37, 1093-1098.
[66] Rotta, J. C.1951Statistische Theorie nichthomogener Turbulenz. Z. Phys.129, 547-572 (in German). · Zbl 0042.43304
[67] Santarelli, C.2015 Direct numerical simulations of bubbles in turbulent flows with heat transfer. PhD thesis, Institute of Fluid Mechanics, Technische Universität Dresden, TUDpress, Dresden.
[68] Santarelli, C. & Fröhlich, J.2015Direct numerical simulations of spherical bubbles in vertical turbulent channel flow. Intl J. Multiphase Flow75, 174-193.
[69] Santarelli, C. & Fröhlich, J.2016Direct numerical simulations of spherical bubbles in vertical turbulent channel flow. Influence of bubble size and bidispersity. Intl J. Multiphase Flow81, 27-45.
[70] Santarelli, C., Roussel, J. & Fröhlich, J.2016Budget analysis of the turbulent kinetic energy for bubbly flow in a vertical channel. Chem. Engng Sci.141, 46-62.
[71] Sarkar, S. & Speziale, C. G.1990A simple nonlinear model for the return to isotropy in turbulence. Phys. Fluids A2, 84-93. · Zbl 0697.76070
[72] Schiller, L. & Naumann, A.1933Über die grundlegenden berechungen bei der schwerkraftaufbereitung. Verein. Deutsch. Ing.77, 318-320.
[73] Shi, P. & Rzehak, R.2018Bubbly flow in stirred tanks: Euler-Euler/RANS modeling. Chem. Engng Sci.190, 419-435.
[74] Shir, C. C.1973A preliminary numerical study of atmospheric turbulent flows in the idealized turbulent boundary layer. J. Atmos. Sci.30, 1327-1339.
[75] Speziale, C., Sarkar, S. & Gatski, T.1991Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech.227, 245-272. · Zbl 0728.76052
[76] Sundaresan, S., Ozel, A. & Kolehmainen, J.2018Toward constitutive models for momentum, species, and energy transport in gas–particle flows. Annu. Rev. Chem. Biomol.9 (1), 61-81.
[77] Tomiyama, A., Tamai, H., Zun, I. & Hosokawa, S.2002Transverse migration of single bubbles in simple shear flows. Chem. Engng Sci.57, 1849-1858.
[78] Troshko, A. A. & Hassan, Y. A.2001A two-equation turbulence model of turbulent bubbly flows. Intl J. Multiphase Flow27, 1965-2000.
[79] Ullrich, M.2017 Second-moment closure modeling of turbulent bubbly flows within the two-fluid model framework. PhD thesis, Technische Universität Darmstadt.
[80] Ullrich, M., Krumbein, B., Maduta, R. & Jakirlić, S.2014An eddy-resolving Reynolds stress model for the turbulent bubbly flow in a square cross-sectioned bubble column. In ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, Canada, Paper No. 38054. ASME.
[81] Wilcox, D. C.1998Turbulence Modeling for CFD, 2nd edn. DCW Industries, Inc.
[82] Ziegenhein, T., Rzehak, R., Ma, T. & Lucas, D.2017Towards a unified approach for modelling uniform and non-uniform bubbly flows. Can. J. Chem. Engng95 (1), 170-179.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.