×

zbMATH — the first resource for mathematics

Turbulent bubbly flow in pipe under gravity and microgravity conditions. (English) Zbl 1275.76013
Summary: Experiments on vertical turbulent flow with millimetric bubbles, under three gravity conditions, upward, downward and microgravity flows (\(1g\), \(- 1g\) and \(0g\)), have been performed to understand the influence of gravity upon the flow structure and the phase distribution. The mean and fluctuating phase velocities, shear stress, turbulence production, gas fraction and bubble size have been measured or determined. The results for \(0g\) flow obtained during parabolic flights are taken as reference for buoyant \(1g\) and \(- 1g\) flows. Three buoyancy numbers are introduced to understand and quantify the effects of gravity with respect to friction. We show that the kinematic structure of the liquid is similar to single-phase flow for \(0g\) flow whereas it deviates in \(1g\) and \(- 1g\) buoyant flows. The present results confirm the existence of a two-layer structure for buoyant flows with a nearly homogeneous core and a wall layer similar to the single-phase inertial layer whose thickness seems to result from a friction-gravity balance. The distributions of phase velocity, shear stress and turbulence are discussed in the light of various existing physical models. This leads to a dimensionless correlation that quantifies the wall shear stress increase due to buoyancy. The turbulent dispersion, the lift and the nonlinear effects of added mass are taken into account in a simplified model for the phase distribution. Its analytical solution gives a qualitative description of the gas fraction distribution in the wall layer.

MSC:
76-05 Experimental work for problems pertaining to fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows
76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.ijheatmasstransfer.2003.10.027 · doi:10.1016/j.ijheatmasstransfer.2003.10.027
[2] DOI: 10.1016/0301-9322(93)90026-Q · Zbl 1144.76415 · doi:10.1016/0301-9322(93)90026-Q
[3] DOI: 10.1017/S0022112076001274 · doi:10.1017/S0022112076001274
[4] DOI: 10.1093/comjnl/7.2.155 · Zbl 0132.11702 · doi:10.1093/comjnl/7.2.155
[5] DOI: 10.1016/j.ijmultiphaseflow.2011.08.009 · doi:10.1016/j.ijmultiphaseflow.2011.08.009
[6] DOI: 10.1115/1.2817389 · doi:10.1115/1.2817389
[7] DOI: 10.1088/0957-0233/9/3/003 · doi:10.1088/0957-0233/9/3/003
[8] DOI: 10.1016/0301-9322(81)90015-X · doi:10.1016/0301-9322(81)90015-X
[9] DOI: 10.1016/0029-5493(86)90052-X · doi:10.1016/0029-5493(86)90052-X
[10] Garnier, 4th International Conference on Multiphase Flow, New Orleans, USA (2001)
[11] DOI: 10.1002/aic.690130213 · doi:10.1002/aic.690130213
[12] DOI: 10.1016/S0301-9322(96)00075-4 · Zbl 1135.76491 · doi:10.1016/S0301-9322(96)00075-4
[13] DOI: 10.1080/00986449608936414 · doi:10.1080/00986449608936414
[14] DOI: 10.1016/0301-9322(91)90048-8 · Zbl 1134.76518 · doi:10.1016/0301-9322(91)90048-8
[15] DOI: 10.1016/0301-9322(93)90030-X · Zbl 1144.76483 · doi:10.1016/0301-9322(93)90030-X
[16] Zun, Transient Phenomena in Multiphase Flow (1988)
[17] DOI: 10.1051/jcp:1999181 · doi:10.1051/jcp:1999181
[18] DOI: 10.1017/S0022112089002697 · doi:10.1017/S0022112089002697
[19] DOI: 10.1016/0301-9322(85)90061-8 · doi:10.1016/0301-9322(85)90061-8
[20] DOI: 10.1016/0301-9322(87)90052-8 · doi:10.1016/0301-9322(87)90052-8
[21] Lance, Multiphase Science and Technology: Two-phase Flow Fundamentals vol. 8 pp 69– (1994)
[22] DOI: 10.1017/S0022112091001015 · doi:10.1017/S0022112091001015
[23] DOI: 10.1016/S0009-2509(02)00085-4 · doi:10.1016/S0009-2509(02)00085-4
[24] Lamb, Hydrodynamics (1932)
[25] DOI: 10.1017/S0022112082000494 · doi:10.1017/S0022112082000494
[26] Lahey, 2nd Microgravity Fluid Physics Conference, Cleveland, Ohio, USA pp 193– (1994)
[27] DOI: 10.1016/S0301-9322(98)00040-8 · Zbl 1137.76628 · doi:10.1016/S0301-9322(98)00040-8
[28] DOI: 10.1016/S0301-9322(02)00129-5 · Zbl 1136.76653 · doi:10.1016/S0301-9322(02)00129-5
[29] DOI: 10.1016/S0301-9322(01)00010-6 · Zbl 1137.76625 · doi:10.1016/S0301-9322(01)00010-6
[30] DOI: 10.1016/j.ijmultiphaseflow.2008.01.007 · doi:10.1016/j.ijmultiphaseflow.2008.01.007
[31] Serizawa, Intl J. Multiphase Flow 2 pp 236– (1975)
[32] DOI: 10.1016/j.ces.2009.09.017 · doi:10.1016/j.ces.2009.09.017
[33] DOI: 10.1016/0029-5493(90)90193-2 · doi:10.1016/0029-5493(90)90193-2
[34] Serizawa, Transient Phenomena in Multiphase Flow pp 179– (1988)
[35] DOI: 10.1007/s00348-009-0690-x · doi:10.1007/s00348-009-0690-x
[36] DOI: 10.1016/j.ijheatfluidflow.2004.02.001 · doi:10.1016/j.ijheatfluidflow.2004.02.001
[37] Schlichting, Boundary-layer Theory (1968) · Zbl 0096.20105
[38] DOI: 10.1615/MultScienTechn.v22.i3.30 · doi:10.1615/MultScienTechn.v22.i3.30
[39] Sato, J. Fluid Mech. 88 pp 63– (1987)
[40] Hinze, Turbulence (1959)
[41] DOI: 10.1017/S0022112009992084 · Zbl 1189.76038 · doi:10.1017/S0022112009992084
[42] DOI: 10.1016/j.ijheatfluidflow.2004.02.018 · doi:10.1016/j.ijheatfluidflow.2004.02.018
[43] Clift, Bubbles, Drops and Particles (1978)
[44] DOI: 10.1088/0957-0233/6/10/013 · doi:10.1088/0957-0233/6/10/013
[45] DOI: 10.1017/S0022112095000280 · Zbl 0848.76063 · doi:10.1017/S0022112095000280
[46] DOI: 10.1016/0301-9322(88)90019-5 · doi:10.1016/0301-9322(88)90019-5
[47] Fabre, Multiphase Flow and Heat Transfer III vol. A pp 41– (1983)
[48] DOI: 10.1016/j.ces.2007.04.035 · doi:10.1016/j.ces.2007.04.035
[49] DOI: 10.1016/S0301-9322(02)00123-4 · Zbl 1136.76483 · doi:10.1016/S0301-9322(02)00123-4
[50] DOI: 10.1016/0301-9322(94)90095-7 · Zbl 1134.76524 · doi:10.1016/0301-9322(94)90095-7
[51] Chahed, C. R. Acad. Sci. IIb 326 pp 719– (1998)
[52] DOI: 10.1017/S0022112001004761 · Zbl 1107.76300 · doi:10.1017/S0022112001004761
[53] DOI: 10.1016/0301-9322(95)00039-Z · Zbl 1135.76480 · doi:10.1016/0301-9322(95)00039-Z
[54] DOI: 10.1115/1.1514212 · doi:10.1115/1.1514212
[55] DOI: 10.1016/S0017-9310(05)80290-X · doi:10.1016/S0017-9310(05)80290-X
[56] DOI: 10.1016/0301-9322(91)90029-3 · Zbl 1134.76479 · doi:10.1016/0301-9322(91)90029-3
[57] DOI: 10.1017/S0022112082001530 · Zbl 0484.76106 · doi:10.1017/S0022112082001530
[58] DOI: 10.1016/S0017-9310(05)80289-3 · doi:10.1016/S0017-9310(05)80289-3
[59] DOI: 10.1017/S0022112009006090 · Zbl 1181.76058 · doi:10.1017/S0022112009006090
[60] DOI: 10.1175/1520-0469(1964)021&lt;0201:TSOCIT&gt;2.0.CO;2 · doi:10.1175/1520-0469(1964)021<0201:TSOCIT>2.0.CO;2
[61] Liu, 3rd International Conference on Multiphase Flow Lyon, France (1998)
[62] Colin, 4th International Conference on Multiphase Flows, New Orleans, USA (2001)
[63] DOI: 10.1016/S1290-0729(01)01300-X · doi:10.1016/S1290-0729(01)01300-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.