×

zbMATH — the first resource for mathematics

Mathematical modeling of particulate suspension flows in vertical circular pipes. (English) Zbl 1210.76194
Summary: An idealized continuum mathematical model of laminar fully developed steady vertical particulate suspension flows is employed to produce both closed form and numerical solutions. These solutions are used to demonstrate that the model is capable of a rich variety of predictions including several commonly observed particle segregation patterns.

MSC:
76T20 Suspensions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Soo, S.L., Appl. sci. res., 21, 68, (1969)
[2] Drew, D.A.; Lahey, R.T., J. fluid mech., 117, 91, (1982)
[3] Achard, J.L.; Cartellier, A., Phys. chem. hydrodyn., 6, 841, (1985)
[4] Wang, S.K.; Lee, S.J.; Jones, O.C.; Lahey, R.T., Int. J. multiphase flow, 13, 327, (1987)
[5] Sinclair, J.L.; Jackson, R., Aiche j., 35, 1473, (1989)
[6] Lahey, R.T., Nuclear eng. design, 122, 17, (1990)
[7] Arastoopour, H.; Pakdel, P.; Adewumi, M., Powder technol., 62, 163, (1990)
[8] Lin, D.M.; Tsai, S.T., Appl. math. mech., 11, 1095, (1990)
[9] Drew, D.A., ASME J. fluids eng., 112, 362, (1990)
[10] Pita, J.A.; Sundaresan, S., Aiche j., 37, 1009, (1991)
[11] Pita, J.A.; Sundaresan, S., Aiche j., 39, 541, (1993)
[12] Antel, S.P.; Lahey, R.T.; Flaherty, J.E., Int. J. multipahse flow, 17, 635, (1991) · Zbl 1134.76479
[13] Johnson, G.; Massoudi, M.; Rajagopal, K.R., Chem. eng. sci., 46, 1713, (1991)
[14] Johnson, G.; Massoudi, M.; Rajagopal, K.R., Int. J. eng. sci., 29, 649, (1991)
[15] Molodtsof, V.; Muzyka, D.W., Int. J. multiphase flow, 17, 573, (1991) · Zbl 1134.76614
[16] Hwang, G.J.; Shen, H.H., Int. J. multiphase flow, 17, 45, (1991)
[17] Gadiraju, M.; Peddieson, J.; Munukutla, S., Mech. res. comm., 19, 7, (1992)
[18] Nott, P.; Jackson, R., J. fluid mech., 241, 125, (1992)
[19] Miller, A.; Gidaspow, D., Aiche j., 38, 1801, (1992)
[20] Ocone, R.; Sundaresan, S.; Jackson, R., Aiche j., 39, 1261, (1993)
[21] Dasgupta, S.; Jackson, R.; Sundaresan, S., Aiche j., 40, 215, (1994)
[22] Lopez de Bertodano, M.; Lahey, R.T.; Jones, R., Int. J. multiphase flow, 20, 805, (1994) · Zbl 1134.76524
[23] Cao, J.; Ahmadi, G., Int. J. multiphase flow, 21, 1203, (1995) · Zbl 1135.76374
[24] Bolio, E.J.; Yasuna, J.A.; Sinclair, J.L., Aiche j., 41, 1375, (1995)
[25] Bolio, E.J.; Sinclair, J.L., Int. J. multiphase flow, 21, 985, (1995)
[26] Samuelsberg, A.; Hjertager, B.H., Aiche j., 42, 1536, (1996)
[27] Nieuwland, J.J.; van Sint Annaland, M.; Kuipers, J.A.M.; van Swaaij, W.P.M., Aiche j., 42, 1569, (1996)
[28] Jean, T.H.; Peddieson, J., Dev. theor. appl. mech., 18, 491, (1996)
[29] Hrenya, C.M.; Sinclair, J.L., Aiche j., 43, 853, (1997)
[30] Drew, D.A.; Lahey, R.T., Int. J. multiphase flow, 5, 243, (1979)
[31] Jean, T.H.; Peddieson, J., Int. J. eng. sci., 35, 803, (1997)
[32] S.L. Soo, Fluid Dynamics of Multiphase Systems, Blaisedell, New York, 1967 (Chapter 6) · Zbl 0173.52901
[33] Marble, F.E., Ann. rev. fluid mech., 2, 397, (1970)
[34] Rubinow, S.I.; Keller, J.B., J. fluid mech., 11, 447, (1961) · Zbl 0103.19503
[35] Saffman, P.G., J. fluid mech., 22, 385, (1965) · Zbl 0147.44201
[36] Puri, I.K.; Libby, P.A., Phys. fluids, 7, 1281, (1990)
[37] Blottner, F.G., Aiaa j., 8, 193, (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.