×

Thrust, drag and wake structure in flapping compliant membrane wings. (English) Zbl 1415.76785

Summary: We present a theoretical framework to characterize the steady and unsteady aeroelastic behaviour of compliant membrane wings under different conditions. We develop an analytic model based on thin airfoil theory coupled with a membrane equation. Adopting a numerical solution to the model equations, we study the effects of wing compliance, inertia and flapping kinematics on aerodynamic performance. The effects of added mass and fluid damping on a flapping membrane are quantified using a simple damped oscillator model. As the flapping frequency is increased, membranes go through a transition from thrust to drag around the resonant frequency, and this transition is earlier for more compliant membranes. The wake also undergoes a transition from a reverse von Kármán wake to a traditional von Kármán wake. The wake transition frequency is predicted to be higher than the thrust-drag transition frequency for highly compliant wings.

MSC:

76Z10 Biopropulsion in water and in air
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76G25 General aerodynamics and subsonic flows

Software:

XFOIL
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alben, S., Optimal flexibility of a flapping appendage in an inviscid fluid, J. Fluid Mech., 614, 355-380, (2008) · Zbl 1162.76014 · doi:10.1017/S0022112008003297
[2] Alben, S., Simulating the dynamics of flexible bodies and vortex sheets, J. Comput. Phys., 228, 7, 2587-2603, (2009) · Zbl 1158.74015 · doi:10.1016/j.jcp.2008.12.020
[3] Andersen, A.; Bohr, T.; Schnipper, T.; Walther, J. H., Wake structure and thrust generation of a flapping foil in two-dimensional flow, J. Fluid Mech., 812, (2017) · Zbl 1383.76116 · doi:10.1017/jfm.2016.808
[4] Attar, P. J.; Gordnier, R. E.; Johnston, J. W.; Romberg, W. A.; Parthasarathy, R. N., Aeroelastic analysis of membrane microair vehicles. Part II. Computational study of a plunging membrane airfoil, J. Vib. Acoust., 133, 2, (2011)
[5] Banerjee, S. & Patil, M.2008Aeroelastic analysis of membrane wings. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1812. American Institute of Aeronautics and Astronautics.
[6] Bergou, A. J.; Swartz, S. M.; Vejdani, H.; Riskin, D. K.; Reimnitz, L.; Taubin, G.; Breuer, K. S., Falling with style: bats perform complex aerial rotations by adjusting wing inertia, PLoS Biol., 13, 11, 1-16, (2015) · doi:10.1371/journal.pbio.1002297
[7] Blake, R., Fish Locomotion, (1983), Cambridge University Press
[8] Bohl, D. G.; Koochesfahani, M. M., MTV measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency, J. Fluid Mech., 620, 63-88, (2009) · Zbl 1156.76305 · doi:10.1017/S0022112008004734
[9] Cheney, J. A.; Konow, N.; Middleton, K. M.; Breuer, K. S.; Roberts, T. J.; Giblin, E. L.; Swartz, S. M., Membrane muscle function in the compliant wings of bats, Bioinspir. Biomim., 9, 2, (2014) · doi:10.1088/1748-3182/9/2/025007
[10] Childress, S., Mechanics of Swimming and Flying, (1981), Cambridge University Press · Zbl 0499.76118 · doi:10.1017/CBO9780511569593
[11] Das, A.; Shukla, R. K.; Govardhan, R. N., Existence of a sharp transition in the peak propulsive efficiency of a low-pitching foil, J. Fluid Mech., 800, 307-326, (2016) · Zbl 1460.76579 · doi:10.1017/jfm.2016.399
[12] Deng, J.; Sun, L.; Teng, L.; Pan, D.; Shao, X., The correlation between wake transition and propulsive efficiency of a flapping foil: a numerical study, Phys. Fluids, 28, 9, (2016) · doi:10.1063/1.4961566
[13] Dewey, P. A.; Boschitsch, B. M.; Moored, K. W.; Stone, H. A.; Smits, A. J., Scaling laws for the thrust production of flexible pitching panels, J. Fluid Mech., 732, 29-46, (2013) · Zbl 1294.76010 · doi:10.1017/jfm.2013.384
[14] Drela, M.1989Xfoil: an analysis and design system for low Reynolds number airfoils. In Low Reynolds Number Aerodynamics (ed. Mueller, T. J.), . Springer.
[15] Fernandez-Feria, R., Linearized propulsion theory of flapping airfoils revisited, Phys. Rev. Fluids, 1, 8, (2016) · doi:10.1103/PhysRevFluids.1.084502
[16] Garrick, I. E.1936 Propulsion of a flapping and oscillating airfoil. NACA Tech. Rep. 567. · JFM 62.1583.01
[17] Godoy-Diana, R.; Aider, J.-L.; Wesfreid, J. E., Transitions in the wake of a flapping foil, Phys. Rev. E, 77, 1, (2008)
[18] Gordnier, R. E., High fidelity computational simulation of a membrane wing airfoil, J. Fluids Struct., 25, 5, 897-917, (2009) · doi:10.1016/j.jfluidstructs.2009.03.004
[19] Heathcote, S.; Gursul, I., Flexible flapping airfoil propulsion at low Reynolds numbers, AIAA J., 45, 5, 1066-1079, (2007)
[20] Hubel, T. Y.; Hristov, N. I.; Swartz, S. M.; Breuer, K. S., Changes in kinematics and aerodynamics over a range of speeds in Tadarida brasiliensis, the Brazilian free-tailed bat, J. R. Soc. Interface, 9, 71, 1120-1130, (2012) · doi:10.1098/rsif.2011.0838
[21] Jaworski, J. W.; Gordnier, R. E., High-order simulations of low Reynolds number membrane airfoils under prescribed motion, J. Fluids Struct., 31, 49-66, (2012) · doi:10.1016/j.jfluidstructs.2012.04.003
[22] Jaworski, J. W.; Gordnier, R. E., Thrust augmentation of flapping airfoils in low Reynolds number flow using a flexible membrane, J. Fluids Struct., 52, 199-209, (2015) · doi:10.1016/j.jfluidstructs.2014.08.010
[23] Jones, K. & Platzer, M.1997Numerical computation of flapping-wing propulsion and power extraction. In 35th Aerospace Sciences Meeting and Exhibit, p. 826. American Institute of Aeronautics and Astronautics.
[24] Kang, C.-K.; Shyy, W., Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover, J. R. Soc. Interface, 11, 101, (2014)
[25] Katz, J.; Plotkin, A., Low-Speed Aerodynamics, (2001), Cambridge University Press · Zbl 0976.76003 · doi:10.1017/CBO9780511810329
[26] Mason, J. C.; Handscomb, D. C., Chebyshev Polynomials, (2002), Chapman and Hall/CRC · doi:10.1201/9781420036114
[27] Medina, C.; Kang, C. K., An analytical solution to the aeroelastic response of a two-dimensional elastic plate in axial potential flow, J. Fluid Mech., 845, R3, (2018) · Zbl 1406.76043 · doi:10.1017/jfm.2018.264
[28] Michelin, S.; Llewellyn Smith, S. G., Resonance and propulsion performance of a heaving flexible wing, Phys. Fluids, 21, 7, (2009) · Zbl 1183.76353 · doi:10.1063/1.3177356
[29] Minami, H., Added mass of a membrane vibrating at finite amplitude, J. Fluids Struct., 12, 7, 919-932, (1998) · doi:10.1006/jfls.1998.0175
[30] Moore, M. N. J., Analytical results on the role of flexibility in flapping propulsion, J. Fluid Mech., 757, 599-612, (2014) · Zbl 1416.76318 · doi:10.1017/jfm.2014.533
[31] Moore, M. N. J., Torsional spring is the optimal flexibility arrangement for thrust production of a flapping wing, Phys. Fluids, 27, 9, (2015) · doi:10.1063/1.4930235
[32] Moore, M. N. J., A fast Chebyshev method for simulating flexible-wing propulsion, J. Comput. Phys., 345, 792-817, (2017) · Zbl 1378.74072 · doi:10.1016/j.jcp.2017.05.052
[33] Moored, K. W.; Dewey, P. A.; Boschitsch, B. M.; Smits, A. J.; Haj-Hariri, H., Linear instability mechanisms leading to optimally efficient locomotion with flexible propulsors, Phys. Fluids, 26, 4, (2014) · doi:10.1063/1.4872221
[34] Morison, J.; Johnson, J.; Schaaf, S., The force exerted by surface waves on piles, J. Petrol. Tech., 2, 5, 149-154, (1950) · doi:10.2118/950149-G
[35] Newman, B. G., Aerodynamic theory for membranes and sails, Prog. Aerosp. Sci., 24, 1, 1-27, (1987) · Zbl 0648.76043 · doi:10.1016/0376-0421(87)90005-4
[36] Nielsen, J. N., Theory of flexible aerodynamic surfaces, Trans. ASME J. Appl. Mech., 30, 3, 435-442, (1963) · Zbl 0127.41701 · doi:10.1115/1.3636575
[37] Olivier, M.; Dumas, G., A parametric investigation of the propulsion of 2D chordwise-flexible flapping wings at low Reynolds number using numerical simulations, J. Fluids Struct., 63, 210-237, (2016) · doi:10.1016/j.jfluidstructs.2016.03.010
[38] Païdoussis, M.; Price, S.; De Langre, E., Fluid-Structure Interactions: Cross-Flow-Induced Instabilities, (2010), Cambridge University Press · Zbl 1286.74002 · doi:10.1017/CBO9780511760792
[39] Paraz, F.; Schouveiler, L.; Eloy, C., Thrust generation by a heaving flexible foil: resonance, nonlinearities, and optimality, Phys. Fluids, 28, 1, (2016) · doi:10.1063/1.4939499
[40] Pederzani, J. N.; Haj-Hariri, H., Numerical analysis of heaving flexible airfoils in a viscous flow, AIAA J., 44, 11, 2773-2779, (2006)
[41] Quinn, D. B.; Lauder, G. V.; Smits, A. J., Maximizing the efficiency of a flexible propulsor using experimental optimization, J. Fluid Mech., 767, 430-448, (2015) · doi:10.1017/jfm.2015.35
[42] Richards, A. J.; Oshkai, P., Effect of the stiffness, inertia and oscillation kinematics on the thrust generation and efficiency of an oscillating-foil propulsion system, J. Fluids Struct., 57, 357-374, (2015) · doi:10.1016/j.jfluidstructs.2015.07.003
[43] Rojratsirikul, P.; Wang, Z. J.; Gursul, I., Unsteady fluid – structure interactions of membrane airfoils at low Reynolds numbers, Exp. Fluids, 46, 5, 859-872, (2009) · doi:10.1007/s00348-009-0623-8
[44] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869, (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[45] Skulborstad, A. J.; Swartz, S. M.; Goulbourne, N. C., Biaxial mechanical characterization of bat wing skin, Bioinspir. Biomim., 10, 3, (2015) · doi:10.1088/1748-3190/10/3/036004
[46] Smith, R.; Shyy, W., Computation of unsteady laminar flow over a flexible two-dimensional membrane wing, Phys. Fluids, 7, 9, 2175-2184, (1995) · Zbl 1025.76515 · doi:10.1063/1.868467
[47] Smith, R.; Shyy, W., Computational model of flexible membrane wings in steady laminar flow, AIAA J., 33, 10, 1769-1777, (1995) · Zbl 0858.73064
[48] Smith, R.; Shyy, W., Computation of aerodynamic coefficients for a flexible membrane airfoil in turbulent flow: a comparison with classical theory, Phys. Fluids, 8, 12, 3346-3353, (1996) · Zbl 1027.76583 · doi:10.1063/1.869122
[49] Song, A.; Tian, X.; Israeli, E.; Galvao, R.; Bishop, K.; Swartz, S.; Breuer, K., Aeromechanics of membrane wings with implications for animal flight, AIAA J., 46, 8, 2096-2106, (2008)
[50] Spagnolie, S. E.; Moret, L.; Shelley, M. J.; Zhang, J., Surprising behaviors in flapping locomotion with passive pitching, Phys. Fluids, 22, 4, (2010) · Zbl 1190.76116
[51] Theodorsen, T.1935 General theory of aerodynamic instability and the mechanism of flutter. NACA Tech. Rep. 496. · JFM 60.1397.05
[52] Thomson, W., Theory of Vibration with Applications, (1996), CRC Press
[53] Thwaites, B., The aerodynamic theory of sails. I. Two-dimensional sails, Proc. R. Soc. Lond. A, 261, 1306, 402-422, (1961) · Zbl 0096.40803 · doi:10.1098/rspa.1961.0086
[54] Triantafyllou, M. S.; Triantafyllou, G. S.; Gopalkrishnan, R., Wake mechanics for thrust generation in oscillating foils, Phys. Fluids A, 3, 12, 2835-2837, (1991) · doi:10.1063/1.858173
[55] Waldman, R. M.; Breuer, K. S., Camber and aerodynamic performance of compliant membrane wings, J. Fluids Struct., 68, 390-402, (2017) · doi:10.1016/j.jfluidstructs.2016.11.013
[56] Wu, T. Y.-T., Swimming of a waving plate, J. Fluid Mech., 10, 3, 321-344, (1961) · Zbl 0116.16801 · doi:10.1017/S0022112061000949
[57] Zhang, J.; Liu, N. S.; Lu, X. Y., Locomotion of a passively flapping flat plate, J. Fluid Mech., 659, 43-68, (2010) · Zbl 1205.76319 · doi:10.1017/S0022112010002387
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.