×

A review of fuzzy logic and neural network based intelligent control design for discrete-time systems. (English) Zbl 1417.93191

Summary: Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC) and neural network (NN) control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.

MSC:

93C42 Fuzzy control/observation systems
93C55 Discrete-time control/observation systems
68T05 Learning and adaptive systems in artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Goodwin, G.; Sin, K., Adaptive Filtering, Prediction and Control (1984), Englewood Cliffs, NJ, USA: Prentice-Hall, Englewood Cliffs, NJ, USA · Zbl 0653.93001
[2] Aström, K.; Wittenmark, B., Adaptive Control (1989), Addison-Wesley · Zbl 0697.93033
[3] Krstić, M.; Kanellakopoulos, I.; Kokotović, P. V., Nonlinear and Adaptive Control Design (1995), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0763.93043
[4] Tao, G.; Kokotovic, P., Aaptive Control of Systems with Actuator and Sensor Non-Linearities (1996), Hoboken, NJ, USA: John Wiley & Sons, Hoboken, NJ, USA · Zbl 0953.93002
[5] Ge, S. S.; Hang, C. C.; Lee, T. H.; Zhang, T., Stable Adaptive Neural Network Control (2001), Norwell, Mass, USA: Kluwer Academic Publishers, Norwell, Mass, USA · Zbl 1001.93002
[6] Yang, C., Adaptive control and neural network control of nonlinear discrete-time systems [Ph.D. thesis] (2009), National University of Singapore
[7] Yang, C.; Ma, H.; Fu, M., Adaptive predictive control of periodic non-linear auto-regressive moving average systems using nearest-neighbour compensation, IET Control Theory & Applications, 7, 7, 936-951 (2013) · doi:10.1049/iet-cta.2012.0809
[8] Yang, C.; Zhai, L.; Ge, S. S.; Chai, T.; Lee, T. H., Adaptive model reference control of a class of MIMO discrete-time systems with compensation of nonparametric uncertainty, Proceedings of the American Control Conference, IEEE · doi:10.1109/ACC.2008.4587137
[9] Dai, S.-L.; Yang, C.; Ge, S. S.; Lee, T. H., Robust adaptive output feedback control of a class of discrete-time nonlinear systems with nonlinear uncertainties and unknown control directions, International Journal of Robust and Nonlinear Control, 23, 13, 1472-1495 (2013) · Zbl 1278.93080 · doi:10.1002/rnc.2834
[10] Åström, K. J.; Wittenmark, B., On self tuning regulators, Automatica, 9, 2, 185-199 (1973) · Zbl 0249.93049 · doi:10.1016/0005-1098(73)90073-3
[11] Ljung, L., Analysis of recursive stochastic algorithms, IEEE Transactions on Automatic Control, 22, 4, 551-575 (1977) · Zbl 0362.93031
[12] Goodwin, G. C.; Ramadge, P. J.; Caines, P. E., Discrete time multivariable adaptive control, IEEE Transactions on Automatic Control, 25, 3, 449-456 (1980) · Zbl 0429.93034 · doi:10.1109/tac.1980.1102363
[13] Guo, L.; Chen, H. F., The Åström-Wittenmark self-tuning regulator revisited and ELS-based adaptive trackers, IEEE Transactions on Automatic Control, 36, 7, 802-812 (1991) · Zbl 0752.93074 · doi:10.1109/9.85060
[14] Guo, L., Time-Varing Stochastic Systems, Changchun, China: Jilin Science and Technology Press, Changchun, China
[15] Chen, H. F.; Guo, L., Identification and Stochastic Adaptive Control (1991), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 0747.93002 · doi:10.1007/978-1-4612-0429-9
[16] Skantze, F. P.; Kojic, A.; Loh, A.-P.; Annaswamy, A. M., Adaptive estimation of discrete-time systems with nonlinear parameterization, Automatica, 36, 12, 1879-1887 (2000) · Zbl 0964.93077
[17] Chen, L.; Narendra, K. S., Nonlinear adaptive control using neural networks and multiple models, Automatica, 37, 8, 1245-1255 (2001) · Zbl 1112.93329 · doi:10.1016/s0005-1098(01)00072-3
[18] Guo, L.; Wei, C., LS-based discrete-time adaptive nonlinear control: feasibility and limitations, Science in China Series E: Technological Sciences, 39, 3, 255-269 (1996) · Zbl 0865.93056
[19] Xie, L. L.; Guo, L., Adaptive control of discrete-time nonlinear systems with structural uncertainties, Lectures on Systems, Control, and Information. Lectures on Systems, Control, and Information, AMS/IP Studies in Advanced Mathematics, 17 (2000), Providence, RI, USA: American Mathematical Society, International Press, Providence, RI, USA · Zbl 1071.93506
[20] Boskovic, J. D., Stable adaptive control of a class of first-order nonlinearly parameterized plants, IEEE Transactions on Automatic Control, 40, 2, 347-350 (1995) · Zbl 0825.93352 · doi:10.1109/9.341808
[21] Fradkov, A. L.; Miroshnik, I. V.; Nikiforov, V. O., Nonlinear and Adaptive Control of Complex Systems: Mathematics and Its Applications (2004), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands
[22] Angeli, D.; Mosca, E., Adaptive switching supervisory control of nonlinear systems with no prior knowledge of noise bounds, Automatica, 40, 3, 449-457 (2004) · Zbl 1040.93010 · doi:10.1016/j.automatica.2003.12.001
[23] Ma, H. B., Finite-model adaptive control using an LS-like algorithm, International Journal of Adaptive Control and Signal Processing, 21, 5, 391-414 (2007) · Zbl 1134.93357 · doi:10.1002/acs.928
[24] Ma, H. B., Finite-model adaptive control using WLS-like algorithm, Automatica, 43, 4, 677-684 (2007) · Zbl 1114.93058 · doi:10.1016/j.automatica.2006.10.017
[25] Ma, H. B., Several algorithms for finite-model adaptive control: partial answers to finite-model adaptive control problem, Mathematics of Control, Signals, and Systems, 20, 3, 271-303 (2008) · Zbl 1148.93021 · doi:10.1007/s00498-008-0029-9
[26] Ge, S. S.; Hang, C. C.; Zhang, T., A direct adaptive controller for dynamic systems with a class of nonlinear parameterizations, Automatica, 35, 4, 741-747 (1999) · Zbl 0925.93451 · doi:10.1016/s0005-1098(98)00215-5
[27] Li, C. Y.; Guo, L., On feedback capability in a class of nonlinearly parameterized uncertain systems, IEEE Transactions on Automatic Control, 56, 12, 2946-2951 (2011) · Zbl 1368.93220 · doi:10.1109/tac.2011.2160599
[28] Ma, H.; Lum, K.-Y.; Ge, S. S., Adaptive control for a discrete-time first-order nonlinear system with both parametric and non-parametric uncertainties, Proceedings of the 46th IEEE Conference on Decision and Control (CDC ’07), IEEE · doi:10.1109/cdc.2007.4434201
[29] Guo, L., Exploring the capability and limits of the feedback mechanism, Proceedings of the International Congress of Mathematicians (ICM ’02) · Zbl 1136.93348
[30] Ma, H.-B., An ‘impossibility’ theorem on a class of high-order discrete-time nonlinear control systems, Systems and Control Letters, 57, 6, 497-504 (2008) · Zbl 1153.93445 · doi:10.1016/j.sysconle.2007.11.008
[31] Kanellakopoulos, I.; Kokotovic, P. V.; Morse, A. S., Systematic design of adaptive controllers for feedback linearizable systems, IEEE Transactions on Automatic Control, 36, 11, 1241-1253 (1991) · Zbl 0768.93044 · doi:10.1109/9.100933
[32] Zadeh, L. A., Fuzzy sets, Information and Control, 8, 3, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/s0019-9958(65)90241-x
[33] Wang, L.-X.; Mendel, J. M., Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Transactions on Neural Networks, 3, 5, 807-814 (1992) · doi:10.1109/72.159070
[34] Wang, L.-X., Stable adaptive fuzzy control of nonlinear systems, IEEE Transactions on Fuzzy Systems, 1, 2, 146-155 (1993) · doi:10.1109/91.227383
[35] McCulloch, W. S.; Pitts, W., A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, 5, 115-133 (1943) · Zbl 0063.03860
[36] Hornik, K.; Stinchcombe, M.; White, H., Multilayer feedforward networks are universal approximators, Neural Networks, 2, 5, 359-366 (1989) · Zbl 1383.92015 · doi:10.1016/0893-6080(89)90020-8
[37] Khanna, T., Foundations of Neural Networks (1990), Reading, Mass, USA: Addison-Wesley, Reading, Mass, USA · Zbl 0752.92003
[38] Sanner, R. M.; Slotine, J.-J. E., Gaussian networks for direct adaptive control, IEEE Transactions on Neural Networks, 3, 6, 837-863 (1992) · doi:10.1109/72.165588
[39] Liu, Y. J.; Fang, Y. J.; Bao-Ping, M. A., Sliding-data-window-driven Bayesian-Gaussian neural network and its application to modeling of nonlinear system, Control Theory & Applications, 26, 12, 1435-1438 (2009)
[40] Wang, D.; Huang, J., Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form, Automatica, 38, 8, 1365-1372 (2002) · Zbl 0998.93026 · doi:10.1016/s0005-1098(02)00034-1
[41] Song, Y.; Grizzle, J. W., Adaptive output-feedback control of a class of discrete-time nonlinear systems, Proceedings of the American Control Conference
[42] Chen, B.-S.; Tseng, C.-S.; Uang, H.-J., Robustness design of nonlinear dynamic systems via fuzzy linear control, IEEE Transactions on Fuzzy Systems, 7, 5, 571-585 (1999) · doi:10.1109/91.797980
[43] Chai, T.; Tong, S., Fuzzy direct adaptive control for a class of nonlinear systems, Fuzzy Sets and Systems, 103, 3, 379-387 (1999) · Zbl 0952.93078 · doi:10.1016/s0165-0114(97)00195-4
[44] Tanaka, K.; Ikeda, T.; Wang, H. O., Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, \(H^\infty\) control theory, and linear matrix inequalities, IEEE Transactions on Fuzzy Systems, 4, 1, 1-13 (1996) · doi:10.1109/91.481840
[45] Jagannathan, S.; Vandegrift, M. W.; Lewis, F. L., Adaptive fuzzy logic control of discrete-time dynamical systems, Automatica, 36, 2, 229-241 (2000) · Zbl 0942.93020 · doi:10.1016/s0005-1098(99)00143-0
[46] Jiang, Y.; Liu, Z.; Chen, C.; Zhang, Y., Adaptive robust fuzzy control for dual arm robot with unknown input deadzone nonlinearity, Nonlinear Dynamics, 81, 3, 1301-1314 (2015) · Zbl 1348.93123 · doi:10.1007/s11071-015-2070-9
[47] Vandegrift, M. W.; Lewis, F. L.; Jagannathan, S.; Liu, K., Adaptive fuzzy logic control of discrete-time dynamical systems, Proceedings of the IEEE International Symposium on Intelligent Control, IEEE · Zbl 0942.93020 · doi:10.1109/ISIC.1995.525089
[48] Jagannathan, S., Adaptive fuzzy logic control of feedback linearizable discrete-time dynamical systems under persistence of excitation, Automatica, 34, 11, 1295-1310 (1998) · Zbl 0942.93019 · doi:10.1016/S0005-1098(98)00084-3
[49] Qi, R.; Brdys, M. A., Stable indirect adaptive control based on discrete-time T-S fuzzy model, Fuzzy Sets and Systems, 159, 8, 900-925 (2008) · Zbl 1170.93347 · doi:10.1016/j.fss.2007.08.009
[50] Lin, T.-C.; Chang, S.-W.; Hsu, C.-H., Robust adaptive fuzzy sliding mode control for a class of uncertain discrete-time nonlinear systems, International Journal of Innovative Computing, Information and Control, 8, 1, 347-359 (2012)
[51] Feng, G.; Chen, G., Adaptive control of discrete-time chaotic systems: a fuzzy control approach, Chaos, Solitons and Fractals, 23, 2, 459-467 (2005) · Zbl 1061.93501 · doi:10.1016/j.chaos.2004.04.013
[52] Lee, H. J.; Park, J. B.; Chen, G., Robust fuzzy control of nonlinear systems with parametric uncertainties, IEEE Transactions on Fuzzy Systems, 9, 2, 369-379 (2001) · doi:10.1109/91.919258
[53] Cao, Y.-Y.; Frank, P. M., Robust \(H_\infty\) disturbance attenuation for a class of uncertain discrete-time fuzzy systems, IEEE Transactions on Fuzzy Systems, 8, 4, 406-415 (2000) · doi:10.1109/91.868947
[54] Zhou, S.; Feng, G.; Lam, J.; Xu, S., Robust \(H_\infty\) control for discrete-time fuzzy systems via basis-dependent Lyapunov functions, Information Sciences, 174, 3-4, 197-217 (2005) · Zbl 1113.93038 · doi:10.1016/j.ins.2004.07.015
[55] Xu, S.; Lam, J., Robust \(H_\infty\) control for uncertain discrete-time-delay fuzzy systems via output feedback controllers, IEEE Transactions on Fuzzy Systems, 13, 1, 82-93 (2005) · doi:10.1109/tfuzz.2004.839661
[56] Tseng, C.-S.; Chen, B.-S., Robust fuzzy observer-based fuzzy control design for nonlinear discrete-time systems with persistent bounded disturbances, IEEE Transactions on Fuzzy Systems, 17, 3, 711-723 (2009) · doi:10.1109/tfuzz.2008.928604
[57] Xu, S.; Song, B.; Lu, J.; Lam, J., Robust stability of uncertain discrete-time singular fuzzy systems, Fuzzy Sets and Systems, 158, 20, 2306-2316 (2007) · Zbl 1122.93065 · doi:10.1016/j.fss.2007.05.008
[58] Wu, Z.-G.; Shi, P.; Su, H.; Chu, J., Reliable \(H_\infty\) control for discrete-time fuzzy systems with infinite-distributed delay, IEEE Transactions on Fuzzy Systems, 20, 1, 22-31 (2012) · doi:10.1109/tfuzz.2011.2162850
[59] Feng, G.; Ma, J., Quadratic stabilization of uncertain discrete-time fuzzy dynamic systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48, 11, 1337-1344 (2001) · doi:10.1109/81.964424
[60] Kruszewski, A.; Wang, R.; Guerra, T. M., Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: a new approach, IEEE Transactions on Automatic Control, 53, 2, 606-611 (2008) · Zbl 1367.93333 · doi:10.1109/tac.2007.914278
[61] Wang, W.-J.; Chen, Y.-J.; Sun, C.-H., Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function, IEEE Transactions on Systems, Man, & Cybernetics Part B: Cybernetics, 37, 3, 551-559 (2007) · doi:10.1109/tsmcb.2006.887434
[62] Feng, G., Stability analysis of discrete-time fuzzy dynamic systems based on piecewise Lyapunov functions, IEEE Transactions on Fuzzy Systems, 12, 1, 22-28 (2004) · doi:10.1109/tfuzz.2003.819833
[63] Gao, H.; Liu, X.; Lam, J., Stability analysis and stabilization for discrete-time fuzzy systems with time-varying delay, IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 39, 2, 306-317 (2009) · doi:10.1109/tsmcb.2008.2003449
[64] Wu, L.; Su, X.; Shi, P.; Qiu, J., A new approach to stability analysis and stabilization of discrete-time T-S fuzzy time-varying delay systems, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41, 1, 273-286 (2011) · doi:10.1109/tsmcb.2010.2051541
[65] Su, X.; Shi, P.; Wu, L.; Song, Y.-D., A novel control design on discrete-time takagi-sugeno fuzzy systems with time-varying delays, IEEE Transactions on Fuzzy Systems, 21, 4, 655-671 (2013) · doi:10.1109/TFUZZ.2012.2226941
[66] Su, X.; Shi, P.; Wu, L.; Song, Y.-D., A novel approach to filter design for T-S fuzzy discrete-time systems with time-varying delay, IEEE Transactions on Fuzzy Systems, 20, 6, 1114-1129 (2012) · doi:10.1109/tfuzz.2012.2196522
[67] Tseng, C.-S., Model reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with time-delay, IEEE Transactions on Fuzzy Systems, 14, 1, 58-70 (2006) · doi:10.1109/TFUZZ.2005.861609
[68] Su, X.; Shi, P.; Wu, L.; Nguang, S. K., Induced \(\text{l}_{\text{2}}\) filtering of fuzzy stochastic systems with time-varying delays, IEEE Transactions on Cybernetics, 43, 4, 1257-1264 (2013) · doi:10.1109/tsmcb.2012.2227721
[69] Wu, L.; Su, X.; Shi, P.; Qiu, J., Model approximation for discrete-time state-delay systems in the TS fuzzy framework, IEEE Transactions on Fuzzy Systems, 19, 2, 366-378 (2011) · doi:10.1109/TFUZZ.2011.2104363
[70] Lewis, F. L.; Jagannathan, S.; Yesildirek, A., Neural Network Control of Robot Manipulators and Nonlinear Systems (1999), London, UK: Taylor & Francis, London, UK
[71] Shaw, A. M.; Doyle, F. J., Multivariable nonlinear control applications for a high purity distillation column using a recurrent dynamic neuron model, Journal of Process Control, 7, 4, 255-268 (1997) · doi:10.1016/S0959-1524(97)00002-4
[72] Najim, K., Process Modeling and Control in Chemical Engineering (1989), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0688.93036
[73] Xu, B.; Wang, D.; Sun, F.; Shi, Z., Direct neural discrete control of hypersonic flight vehicle, Nonlinear Dynamics, 70, 1, 269-278 (2012) · Zbl 1267.93088 · doi:10.1007/s11071-012-0451-x
[74] Xu, B.; Zhang, Y., Neural discrete back-stepping control of hypersonic flight vehicle with equivalent prediction model, Neurocomputing, 154, 337-346 (2015) · doi:10.1016/j.neucom.2014.11.059
[75] Xu, B.; Sun, F.; Liu, H.; Ren, J., Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping, IET Control Theory & Applications, 6, 4, 487-497 (2012) · doi:10.1049/iet-cta.2011.0026
[76] Xu, B., Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity, Nonlinear Dynamics, 80, 3, 1509-1520 (2015) · Zbl 1351.93102 · doi:10.1007/s11071-015-1958-8
[77] Xu, B.; Huang, X.; Wang, D.; Sun, F., Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation, Asian Journal of Control, 16, 1, 162-174 (2014) · Zbl 1286.93058 · doi:10.1002/asjc.679
[78] Xu, B.; Shi, Z., An overview on flight dynamics and control approaches for hypersonic vehicles, Science China Information Sciences, 58, 7, 1-19 (2015) · doi:10.1007/s11432-014-5273-7
[79] Rumelhart, D. E.; Hinton, G. E.; Williams, R. J., Learning internal representations by error propagation, Parallel Distributed Processing, 1, 318-362 (1986), MIT Press
[80] Jagannathan, S.; Lewis, F. L., Discrete-time neural net controller for a class of nonlinear dynamical systems, IEEE Transactions on Automatic Control, 41, 11, 1693-1699 (1996) · Zbl 0872.93046 · doi:10.1109/9.544013
[81] Jagannathan, S.; Lewis, F. L., Multilayer discrete-time neural-net controller with guaranteed performance, IEEE Transactions on Neural Network, 7, 1, 107-130 (1996) · doi:10.1109/72.478396
[82] He, P.; Jagannathan, S., Neuro-controller for reducing cyclic variation in lean combustion spark ignition engines, Automatica, 41, 7, 1133-1142 (2005) · Zbl 1082.93021 · doi:10.1016/j.automatica.2005.01.013
[83] Ge, S. S.; Li, G. Y.; Lee, T. H., Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems, Automatica, 39, 5, 807-819 (2003) · Zbl 1023.93034 · doi:10.1016/s0005-1098(03)00032-3
[84] Ge, S. S.; Lee, T. H.; Li, G. Y.; Zhang, J., Adaptive NN control for a class of discrete-time non-linear systems, International Journal of Control, 76, 4, 334-354 (2003) · Zbl 1048.93055 · doi:10.1080/0020717031000073063
[85] Goh, C. J., Model reference control of non-linear systems via implicit function emulation, International Journal of Control, 60, 1, 91-115 (1994) · Zbl 0812.93049 · doi:10.1080/00207179408921453
[86] Goh, C. J.; Lee, T. H., Direct adaptive control of nonlinear systems via implicit function emulation, Control Theory and Advanced Technology, 10, 3, 539-552 (1994)
[87] Levin, A. U.; Narendra, K. S., Control of nonlinear dynamical systems using neural networks—part II: observability, identification, and control, IEEE Transactions on Neural Networks, 7, 1, 30-42 (1996) · doi:10.1109/72.478390
[88] Ge, S. S.; Zhang, J.; Lee, T. H., Adaptive MNN control for a class of non-affine NARMAX systems with disturbances, Systems & Control Letters, 53, 1, 1-12 (2004) · Zbl 1157.93436 · doi:10.1016/j.sysconle.2004.02.016
[89] Ge, S. S.; Zhang, J.; Lee, T. H., Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34, 4, 1630-1645 (2004) · doi:10.1109/TSMCB.2004.826827
[90] Zhang, J.; Ge, S. S.; Lee, T. H., Output feedback control of a class of discrete MIMO nonlinear systems with triangular form inputs, IEEE Transactions on Neural Networks, 16, 6, 1491-1503 (2005) · doi:10.1109/tnn.2005.852242
[91] Sun, F. C.; Sun, Z.; Woo, P.-Y., Stable neural-network-based adaptive control for sampled-data nonlinear systems, IEEE Transactions on Neural Networks, 9, 5, 956-968 (1998) · doi:10.1109/72.712170
[92] Yang, C.; Ge, S. S.; Xiang, C.; Chai, T.; Lee, T. H., Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach, IEEE Transactions on Neural Networks, 19, 11, 1873-1886 (2008) · doi:10.1109/tnn.2008.2003290
[93] Ge, S. S.; Yang, C.; Lee, T. H., Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time, IEEE Transactions on Neural Networks, 19, 9, 1599-1614 (2008) · doi:10.1109/TNN.2008.2000446
[94] Li, Y.; Yang, C.; Ge, S. S.; Lee, T. H., Adaptive output feedback NN control of a class of discrete-time MIMO nonlinear systems with unknown control directions, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41, 2, 507-517 (2011) · doi:10.1109/tsmcb.2010.2065223
[95] Liu, Y.-J.; Chen, C. L. P.; Wen, G.-X.; Tong, S., Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems, IEEE Transactions on Neural Networks, 22, 7, 1162-1167 (2011) · doi:10.1109/TNN.2011.2146788
[96] Yang, C.; Ge, S. S.; Lee, T. H., Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions, Automatica, 45, 1, 270-276 (2009) · Zbl 1154.93377 · doi:10.1016/j.automatica.2008.07.009
[97] Al-Tamimi, A.; Lewis, F. L.; Abu-Khalaf, M., Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38, 4, 943-949 (2008) · doi:10.1109/tsmcb.2008.926614
[98] Werbos, P., Approximate dynamic programming for real-time control and neural modeling, Handbook of Intelligent Control Neural Fuzzy & Adaptive Approaches (1992), Van Nostrand Reinhold
[99] He, P.; Jagannathan, S., Reinforcement learning neural-network-based controller for nonlinear discrete-time systems with input constraints, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37, 2, 425-436 (2007) · doi:10.1109/TSMCB.2006.883869
[100] Xu, B.; Yang, C.; Shi, Z., Reinforcement learning output feedback NN control using deterministic learning technique, IEEE Transactions on Neural Networks and Learning Systems, 25, 3, 635-641 (2014) · doi:10.1109/tnnls.2013.2292704
[101] Liu, D.; Wang, D.; Zhao, D.; Wei, Q.; Jin, N., Neural-network-based optimal control for a class of unknown discrete-time nonlinear systems using globalized dual heuristic programming, IEEE Transactions on Automation Science and Engineering, 9, 3, 628-634 (2012) · doi:10.1109/tase.2012.2198057
[102] Liu, D.; Wei, Q., Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems, IEEE Transactions on Cybernetics, 43, 2, 779-789 (2013) · doi:10.1109/tsmcb.2012.2216523
[103] Zhong, X.; He, H.; Zhang, H.; Wang, Z., Optimal control for unknown discrete-time nonlinear markov jump systems using adaptive dynamic programming, IEEE Transactions on Neural Networks and Learning Systems, 25, 12, 2141-2155 (2014) · doi:10.1109/tnnls.2014.2305841
[104] Liu, D.; Wang, D.; Yang, X., An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs, Information Sciences, 220, 331-342 (2013) · Zbl 1291.49018 · doi:10.1016/j.ins.2012.07.006
[105] Wang, F.-Y.; Jin, N.; Liu, D.; Wei, Q., Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with \(ε\)-error bound, IEEE Transactions on Neural Networks, 22, 1, 24-36 (2011) · doi:10.1109/tnn.2010.2076370
[106] Zhang, H.; Luo, Y.; Liu, D., Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints, IEEE Transactions on Neural Networks, 20, 9, 1490-1503 (2009) · doi:10.1109/TNN.2009.2027233
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.