×

Dynamic propagation behaviors of pure mode I crack under stress wave loading by caustics. (English) Zbl 07715036

Summary: It is always a difficult task to study the dynamic fracture of prefabricated cracks under stress wave loading. To investigate loadings of stress waves on dynamic cracks, a crack propagation testing configuration consisting of a one-point bend specimen loaded in split Hopkinson pressure bar (SHPB) was used, which loaded an unconstrained polymethyl methacrylate (PMMA) plate (120 mm \(\times 60\) mm \(\times 5\) mm) on the edge opposite to the cracked edge. A modified simple pre-cracked specimen geometry under impact stress wave loading to generate pure mode I crack at crack initiation was demonstrated, which can avoid the superposition and interference of various waves to facilitate the research. The numerical simulation was performed firstly by ABAQUS to prove the existence of the mode I field at the crack tip leading to crack propagation and indicate the stress distribution and evolution in the specimen caused by the propagation of the impact stress wave, analyze the propagation characteristics of the wave. Then dynamic caustics method in conjunction with high-speed photography was utilized in SHPB impact experiment. The propagation of shock stress wave in the specimen and its interaction with the prefabricated crack and the stress concentration at the tip of the prefabricated crack were analyzed. The corresponding stress intensity factor history is precisely determined. Finally, it is concluded that the observed distortion phenomenon at the impact point belongs to a caustic behavior under compression load, which reflects the stress concentration at the impact point. And the mode I failure occurs along the pre-crack direction. Specifically, the pre-crack shows obvious pure mode I crack propagation characteristics under symmetrical reflected tensile wave, the stress at the crack tip changes from compressive stress to tensile stress. And crack propagates under tensile stress wave reflected from its two free boundaries without crack, while the compressive stress wave can not make crack initiate and has little influence on crack propagation. Which agree with the numerical prediction.

MSC:

74-XX Mechanics of deformable solids
76-XX Fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] K. Xia, C. Liu, and P. Kanopoulos, “On the energy of dynamic fractures,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 13, no. 2, pp. 117-123, 2012. doi:10.1515/ijnsns.2011.119. · doi:10.1515/ijnsns.2011.119
[2] Z. Zheng, E. Wang, X. Liu, et al.., “The dynamic response of brittle materials under impact loading,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 18, no. 2, pp. 115-127, 2017. doi:10.1515/ijnsns-2016-0019. · Zbl 1401.74160 · doi:10.1515/ijnsns-2016-0019
[3] F. C. Li and Q. Chen, “Mode II dynamic fields near a crack tip growing elastic-viscoplastic solid,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 4, no. 2, pp. 149-154, 2003. doi:10.1515/ijnsns.2003.4.2.149. · doi:10.1515/ijnsns.2003.4.2.149
[4] K. Ravi-Chandar and W. G. Knauss, “An experimental investigation into dynamic fracture: I. Crack initiation and arrest,” International Journal of Fracture, vol. 25, pp. 247-262, 1984.
[5] K. Ravi-Chandar and W. G. Knauss, “An experimental investigation into dynamic fracture: II. Microstructural aspects,” Int. J. Fract., vol. 26, pp. 65-80, 1984. doi:10.1007/bf01152313. · doi:10.1007/bf01152313
[6] K. Ravi-Chandar and W. G. Knauss, “An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching,” Int. J. Fract., vol. 26, pp. 141-154, 1984. doi:10.1007/bf01157550. · doi:10.1007/bf01157550
[7] K. Ravi-Chandar and W. G. Knauss, “An experimental investigation into dynamic fracture: IV. On the interaction of stress waves with propagating cracks[J],” Int. J. Fract., vol. 26, pp. 189-200, 1984. doi:10.1007/bf01140627. · doi:10.1007/bf01140627
[8] K. Ravi-Chandar, “Experimental challenges in the investigation of dynamic fracture of brittle materials,” in Physical Aspects of Fracture, E. Bouchaud, Ed., Dordrecht, Netherlands, Springer, 2001, pp. 323-342.
[9] L. Freund, Dynamic Fracture Mechanics, Cambridge, Cambridge University Press, 1990. · Zbl 0712.73072
[10] B. M. Sundaram and H. V. Tippur, “Dynamic fracture of soda-lime glass: a full-field optical investigation of crack initiation, propagation and branching,” J. Mech. Phys. Solid., vol. 120, pp. 132-153, 2018. doi:10.1016/j.jmps.2018.04.010. · Zbl 07256808 · doi:10.1016/j.jmps.2018.04.010
[11] B. M. Sundaram and H. V. Tippur, “Dynamic mixed-mode fracture behaviors of PMMA and polycarbonate,” Eng. Fract. Mech., vol. 176, pp. 186-212, 2017. doi:10.1016/j.engfracmech.2017.02.029. · doi:10.1016/j.engfracmech.2017.02.029
[12] A. T. Zehnder and A. J. Rosakis, “Dynamic fracture initiation and propagation in 4340 steel under impact loading,” Int. J. Fract., vol. 43, no. 4, pp. 271-285, 1990. doi:10.1007/bf00035087. · doi:10.1007/bf00035087
[13] J. F. Kalthoff, “On the measurement of dynamic fracture toughnesses-a review of recent work,” Int. J. Fract., vol. 27, nos. 3-4, pp. 277-298, 1985. doi:10.1007/bf00017973. · doi:10.1007/bf00017973
[14] P. S. Theocaris and P. katsamanis, “Response of cracks to impact by caustics,” Eng. Fract. Mech., vol. 10, no. 2, pp. 197-210, 1978. doi:10.1016/0013-7944(78)90003-6. · doi:10.1016/0013-7944(78)90003-6
[15] P. Theocaris and G. Papaopoulos, “The dynamic behavior of an oblique edge-crack under impact loading,” J. Mech. Phys. Solid., vol. 32, no. 4, pp. 281-300, 1984. doi:10.1016/0022-5096(84)90025-5. · doi:10.1016/0022-5096(84)90025-5
[16] O. D. Gonzales and V. Eliasson, “Influence of water uptake on dynamic fracture behavior of poly(methyl methacrylate,” Exp. Mech., vol. 56, no. 1, pp. 59-68, 2016. doi:10.1007/s11340-015-0030-4. · doi:10.1007/s11340-015-0030-4
[17] O. D. Gonzales and V. Eliasson, “Effect of water content on dynamic fracture initiation of vinylester,” Exp. Mech., vol. 56, no. 4, pp. 637-644, 2016. doi:10.1007/s11340-015-0028-y. · doi:10.1007/s11340-015-0028-y
[18] O. D. Gonzales, K. Luong, H. Homma, and V. Eliasson, “Experimental investigation of dynamic fracture initiation in PMMA submerged in water,” Journal of Dynamic Behavior of Materials, vol. 2, no. 3, pp. 391-398, 2016. doi:10.1007/s40870-016-0074-2. · doi:10.1007/s40870-016-0074-2
[19] O. D. Gonzales and V. Eliasson, “Evaluation of the effect of water content on the stress optical coefficient in PMMA,” Polym. Test., vol. 50, pp. 119-124, 2016. doi:10.1016/j.polymertesting.2016.01.004. · doi:10.1016/j.polymertesting.2016.01.004
[20] Y. Renshu, W. Yanbing, and Y. Liyun, “Double holes cut blasting of the crack propagation of dynamic caustics experiment,” Journal of China University of Mining, vol. 9, no. 6, pp. 868-872, 2012.
[21] Y. Renshu, W. Yanbing, and D. Chenxi, “Laboratory study of wave propagation due to explosion in a jointed medium,” Int. J. Rock Mech. Min. Sci., vol. 81, pp. 70-78, 2016.
[22] F. Jiang and K. S. Vecchio, “Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests,” Appl. Mech. Rev., vol. 62, pp. 1-39, 2009. doi:10.1115/1.3124647. · doi:10.1115/1.3124647
[23] J. F. Kalthoff, J. Beinert, S. Winkler, et al.., Experimental Analysis of Dynamic Effects in Different Crack Arrest Test Specimens, vol. 711, Astm Special Technical Publication, 1980, pp. 109-127.
[24] J. Beinert and J. F. Kalthoff, The Development of a Crack Arrest Test Specimen with Reduced Dynamic Effects, Dordrecht, Springer, 1984.
[25] Y. W. Mai, A. G. Atkins, and R. M. Caddell, “On the stability of cracking in tapered DCB testpieces,” Int. J. Fract., vol. 11, no. 6, pp. 939-953, 1975. doi:10.1007/bf00033840. · doi:10.1007/bf00033840
[26] D. Rittel, A. Pineau, J. Clisson, et al.., “On testing of charpy specimens using the one-point bend impact technique,” Exp. Mech., vol. 42, pp. 247-252, 2002. doi:10.1007/bf02410979. · doi:10.1007/bf02410979
[27] F. Jiang, A. Rohatgi, K. S. Vecchio, et al.., “Analysis of the dynamic responses for a pre-cracked three-point bend specimen,” Int. J. Fract., vol. 127, no. 2, pp. 147-165, 2004. doi:10.1023/b:frac.0000035058.03627.30. · Zbl 1187.74088 · doi:10.1023/b:frac.0000035058.03627.30
[28] W. BoHme and J. F. Kalthoff, “The behavior of notched bend specimens in impact testing,” Int. J. Fract., vol. 20, no. 4, pp. R139-R143, 1982.
[29] J. W. Dally, W. L. Fourney, and G. R. Irwin, “On the uniqueness of the stress intensity factor-crack velocity relationship,” Int. J. Fract., vol. 27, nos. 3-4, pp. 159-168, 1985. doi:10.1007/bf00017965. · doi:10.1007/bf00017965
[30] A. Shukla and H. Nigam, “A note on the stress intensity factor and crack velocity relationship for homalite 100,” Eng. Fract. Mech., vol. 25, no. 1, pp. 91-102, 1986. doi:10.1016/0013-7944(86)90206-7. · doi:10.1016/0013-7944(86)90206-7
[31] G. R. Rahul, V. Jayaram, and S. Bose, Dependence of Crack Velocity on Stress Intensity Factor in PMMA Using Single-Edge-Notched Clamped Beams, Singapore, Springer, 2018.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.