×

Dimensional results for the Moran-Sierpinski gasket. (English) Zbl 1265.28018

Summary: The dimensional results of the Moran-Sierpinski gasket are considered. A Moran-Sierpinski gasket has the Moran structure, which is an extension of the Sierpinski gasket by the method of a Moran set. By the technique of a Moran set, the Hausdorff, packing, and upper box dimensions of the Moran-Sierpinski gasket are given. The dimensional results of the Sierpinski gasket can be seen as a special case of this paper.

MSC:

28A80 Fractals
28A78 Hausdorff and packing measures
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhou Z L. Hausdorff measure of Sierpinski gasket [J]. Sci China Ser A, 1997, 40(10): 1016–1021. · Zbl 0908.28004 · doi:10.1007/BF03182360
[2] Zhou J, Luo M K. Maximum density for the Sierpinski gasket[J]. J Math Anal Appl, 2006, 323(1): 597–603. · Zbl 1123.28006 · doi:10.1016/j.jmaa.2005.10.068
[3] Jia B G. Bounds of Hausdorff measure of the Sierpinski gasket[J]. J Math Anal Appl, 2007, 330(2): 1016–1024. · Zbl 1123.28003 · doi:10.1016/j.jmaa.2006.08.026
[4] Wen Z Y. Moran sets and Moran classes[J]. Science China Ser A, 2001, 46(22): 1849–1856.
[5] Li W X, Dekking F M. The dimension of subsets of Moran sets determined by the success run behaviour of their codings[J]. Monatsh Math, 2000, 131(4): 309–320. · Zbl 0976.28003 · doi:10.1007/s006050070003
[6] Hua Su, Li Wenxia. Packing dimension of generalized Moran sets[J]. Progress in Nature Science, 1996, 6(2): 148–152.
[7] Liu Q H, Wen Z Y. On dimensions of multitype Moran sets[J]. Math Proc Cambridge Philos Soc, 2005, 139(3): 541–553. · Zbl 1082.28005 · doi:10.1017/S0305004105008686
[8] Yan Ping. Dimensions of a class of high-dimensional homogeneous Moran sets and Moran classes [J]. Progress in Natural Science, 2002, 12(9): 655–660. · Zbl 1008.28010
[9] Cawley R, Mauldin R D. Multifractal decomposition of Moran fractals[J]. Adv Math, 1992, 92(2): 196–236. · Zbl 0763.58018 · doi:10.1016/0001-8708(92)90064-R
[10] Hua S, Rao H, Wen Z Y, et al. On the structures and dimensions of Moran sets[J]. Sci China Ser A, 2000, 43(8): 836–852. · Zbl 0976.28002 · doi:10.1007/BF02884183
[11] Falconer K J. Fractal Geometry: Mathematical Foundations and Applications[M]. Chichester: John Wiley and Sons, 1990.
[12] Hutchinson J E. Fractals and self-similarity[J]. Indiana Univ Math J, 1981, 30(5): 713–747. · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.