×

An improved operator of combination with adapted conflict. (English) Zbl 1337.68242

Summary: In the belief function theory, combination of reliable or unreliable information sources is concerned for a long time. Recently, E. Lefèvre and Z. Elouedi [“How to preserve the conflict as an alarm in the combination of belief functions?”, Decis. Support Syst. 56, 326–333 (2013; doi:10.1016/j.dss.2013.06.012)] proposed an operator called Combination With Adapted Conflict (CWAC) to synthesize all the knowledge of the initial belief functions. However, several problems are existed in the CWAC operator actually. The conflict obtained by using CWAC actually is not reasonable as an alarm in some situation and cannot truly reflect the opposition between the belief functions in the combination. In this paper, the existing problems of CWAC are exposed. And based on the spirit of original CWAC operator, an improved CWAC operator is proposed, which is more reasonable and effective. Some illustrative examples are given to show the effectiveness and strength of the proposed improved CWAC operator.

MSC:

68T30 Knowledge representation
68T37 Reasoning under uncertainty in the context of artificial intelligence
68U35 Computing methodologies for information systems (hypertext navigation, interfaces, decision support, etc.)
91B06 Decision theory

Software:

MADM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, C. W., & Fan, Y. (2012). Bioethanol supply chain system planning under supply and demand uncertainties. Transportation Research Part E: Logistics and Transportation Review, 48(1), 150-164. · doi:10.1016/j.tre.2011.08.004
[2] Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematics and Statistics, 38(2), 325-339. · Zbl 0168.17501 · doi:10.1214/aoms/1177698950
[3] Deng, X., Hu, Y., Deng, Y., & Mahadevan, S. (2014a). Environmental impact assessment based on D numbers. Expert Systems with Applications, 41(2), 635-643. · doi:10.1016/j.eswa.2013.07.088
[4] Deng, X., Hu, Y., Deng, Y., & Mahadevan, S. (2014b). Supplier selection using AHP methodology extended by D numbers. Expert Systems with Applications, 41(1), 156-167. · doi:10.1016/j.eswa.2013.07.018
[5] Deng, X., Liu, Q., Hu, Y., & Deng, Y. (2013). TOPPER: Topology prediction of transmembrane protein based on evidential reasoning. Scientific World Journal 2013:Article ID 123,731, 8 pages. doi:10.1155/2013/123731.
[6] Deng, X., Wang, Z., Liu, Q., Deng, Y., & Mahadevan, S. (2014c). A belief-based evolutionarily stable strategy. Journal of Theoretical Biology, 361, 81-86. · Zbl 1302.91024 · doi:10.1016/j.jtbi.2014.07.009
[7] Deng, X., Zheng, X., Su, X., Chan, F. T., Hu, Y., Sadiq, R., et al. (2014d). An evidential game theory framework in multi-criteria decision making process. Applied Mathematics and Computation, 244, 783-793. · Zbl 1335.91028 · doi:10.1016/j.amc.2014.07.065
[8] Deng, Y., Shi, W., Zhu, Z., & Liu, Q. (2004). Combining belief functions based on distance of evidence. Decision Support Systems, 38(3), 489-493. · doi:10.1016/j.dss.2004.04.015
[9] Denoeux, T. (2008). Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence. Artificial Intelligence, 172(2), 234-264. · Zbl 1182.68298 · doi:10.1016/j.artint.2007.05.008
[10] Denoeux, T., & Masson, M. H. (2012). Evidential reasoning in large partially ordered sets. Annals of Operations Research, 195(1), 135-161. · Zbl 1251.68240 · doi:10.1007/s10479-011-0887-2
[11] Dezert, J., Han, D., Liu, Z., & Tacnet, J. M. (2012). Hierarchical proportional redistribution for bba approximation. In Belief functions: theory and applications (pp. 275-283). Berlin: Springer.
[12] Dubois, D., & Prade, H. (1986). A set theoretic view of belief functions: Logical operations and approximations by fuzzy sets. International Journal Of General System, 12(3), 193-226. · doi:10.1080/03081078608934937
[13] Florea, M. C., Jousselme, A. L., Bossé, É., & Grenier, D. (2009). Robust combination rules for evidence theory. Information Fusion, 10(2), 183-197. · doi:10.1016/j.inffus.2008.08.007
[14] Fu, C., & Xu, D. L. (2014). Determining attribute weights to improve solution reliability and its application to selecting leading industries. Annals of Operations Research. doi:10.1007/s10479-014-1657-8. · Zbl 1406.90060
[15] Guo, H. W., Shi, W. K., & Deng, Y. (2006). Evaluating sensor reliability in classification problems based on evidence theory. IEEE Transactions on Systems Man and Cybernetics Part B: Cybernetics, 36(5), 970-981. · doi:10.1109/TSMCB.2006.872269
[16] Han, D., Deng, Y., & Han, C. (2013). Sequential weighted combination for unreliable evidence based on evidence variance. Decision Support Systems, 56, 387-393. · doi:10.1016/j.dss.2013.05.004
[17] Jousselme, A. L., Grenier, D., & Bossé, É. (2001). A new distance between two bodies of evidence. Information fusion, 2(2), 91-101. · doi:10.1016/S1566-2535(01)00026-4
[18] Kang, B., Deng, Y., Sadiq, R., & Mahadevan, S. (2012). Evidential cognitive maps. Knowledge-Based Systems, 35, 77-86. · doi:10.1016/j.knosys.2012.04.007
[19] Kohlas, J. (1991). The reliability of reasoning with unreliable arguments. Annals of Operations Research, 32(1), 67-113. · Zbl 0732.68095 · doi:10.1007/BF02204829
[20] Kuo, C. C. (2011). Optimal assignment of resources to strengthen the weakest link in an uncertain environment. Annals of Operations Research, 186(1), 159-173. · Zbl 1225.90072 · doi:10.1007/s10479-011-0860-0
[21] Lefèvre, E., & Elouedi, Z. (2013). How to preserve the conflict as an alarm in the combination of belief functions? Decision Support Systems, 56, 326-333. · doi:10.1016/j.dss.2013.06.012
[22] Li, Z., & Kuo, C. C. (2013). Design of discrete dutch auctions with an uncertain number of bidders. Annals of Operations Research, 211(1), 255-272. · Zbl 1291.91083 · doi:10.1007/s10479-013-1331-6
[23] Lien, G., Hardaker, J. B., van Asseldonk, M. A., & Richardson, J. W. (2011). Risk programming analysis with imperfect information. Annals of Operations Research, 190(1), 311-323. · doi:10.1007/s10479-009-0555-y
[24] Liu, J., Yang, J. B., Ruan, D., Martinez, L., & Wang, J. (2008). Self-tuning of fuzzy belief rule bases for engineering system safety analysis. Annals of Operations Research, 163(1), 143-168. · Zbl 1171.90570 · doi:10.1007/s10479-008-0327-0
[25] Liu, Z., Dezert, J., Pan, Q., & Mercier, G. (2011). Combination of sources of evidence with different discounting factors based on a new dissimilarity measure. Decision Support Systems, 52(1), 133-141. · doi:10.1016/j.dss.2011.06.002
[26] Ma, J., & Liu, W. (2011). A framework for managing uncertain inputs: An axiomization of rewarding. International Journal of Approximate Reasoning, 52(7), 917-934. · Zbl 1226.68102 · doi:10.1016/j.ijar.2011.05.004
[27] Ma, J., Liu, W., Dubois, D., & Prade, H. (2010). Revision rules in the theory of evidence. In 2010 22nd IEEE international conference on tools with artificial intelligence (ICTAI) (vol. 1, pp. 295-302). · Zbl 1225.90072
[28] Ma, J., Liu, W., & Miller, P. (2012). An evidential improvement for gender profiling. In Belief functions: theory and applications (pp. 29-36). Berlin: Springer.
[29] Murphy, C. (2000). Combining belief functions when evidence conflicts. Decision Support Systems, 29(1), 1-9. · doi:10.1016/S0167-9236(99)00084-6
[30] Özkan, E., & Kharoufeh, J. P. (2014). Incompleteness of results for the slow-server problem with an unreliable fast server. Annals of Operations Research. doi:10.1007/s10479-014-1615-5. · Zbl 1310.90030
[31] Pérez, J. C., Carrillo, M. H., & Montoya-Torres, J. R. (2014). Multi-criteria approaches for urban passenger transport systems: A literature review. Annals of Operations Research. doi:10.1007/s10479-014-1681-8. · Zbl 1309.90013
[32] Pishvaee, M., & Torabi, S. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets and Systems, 161(20), 2668-2683. · Zbl 1230.90204 · doi:10.1016/j.fss.2010.04.010
[33] Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press. · Zbl 0359.62002
[34] Smets, P., & Kennes, R. (1994). The transferable belief model. Artificial Intelligence, 66(2), 191-234. · Zbl 0807.68087 · doi:10.1016/0004-3702(94)90026-4
[35] Turgay, Z., Karaesmen, F., & Örmeci, E. L. (2014). A dynamic inventory rationing problem with uncertain demand and production rates. Annals of Operations Research. doi:10.1007/s10479-014-1573-y. · Zbl 1327.90015
[36] Van Den Berg, J., Abbeel, P., & Goldberg, K. (2011). LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information. The International Journal of Robotics Research, 30(7), 895-913. · doi:10.1177/0278364911406562
[37] Wu, D. D. (2009). Supplier selection in a fuzzy group setting: A method using grey related analysis and Dempster-Shafer theory. Expert Systems with Applications, 36(5), 8892-8899. · doi:10.1016/j.eswa.2008.11.010
[38] Xu, D. L. (2012). An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis. Annals of Operations Research, 195(1), 163-187. · Zbl 1251.90225 · doi:10.1007/s10479-011-0945-9
[39] Xu, P., Deng, Y., Su, X., & Mahadevan, S. (2013). A new method to determine basic probability assignment from training data. Knowledge-Based Systems, 46, 69-80. · doi:10.1016/j.knosys.2013.03.005
[40] Yang, J. B., Liu, J., Wang, J., Sii, H. S., & Wang, H. W. (2006). A belief rule-base inference methodology using the evidential reasoning approach-RIMER. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 36(2), 266-285. · doi:10.1109/TSMCA.2005.851270
[41] Yang, J. B., & Singh, M. G. (1994). An evidential reasoning approach for multiple-attribute decision making with uncertainty. IEEE Transactions on Systems, Man and Cybernetics, 24(1), 1-18. · doi:10.1109/21.259681
[42] Yang, J. B., Wang, Y. M., Xu, D. L., Chin, K. S., & Chatton, L. (2012). Belief rule-based methodology for mapping consumer preferences and setting product targets. Expert Systems with Applications, 39(5), 4749-4759. · doi:10.1016/j.eswa.2011.09.105
[43] Zhang, Y., Deng, X., Wei, D., & Deng, Y. (2012). Assessment of E-commerce security using AHP and evidential reasoning. Expert Systems with Applications, 39(3), 3611-3623. · doi:10.1016/j.eswa.2011.09.051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.