×

A novel nonlinear FE perturbation method and its application to stacking sequence optimization for snap-through response of cylindrical shell panel. (English) Zbl 1524.74143

Summary: Cylindrical shell panels are commonly used for the lightweight design of thin-walled structures in the aerospace engineering. In this work, the snap-through buckling of composite cylindrical shell panels subjected to lateral loads is calculated and designed. We present a novel method to extract the essential features of the snap-through response using a fast path-following scheme, and subsequently apply them as inputs to the stacking sequence optimization. In the path-following scheme, the full snap-through response can be achieved efficiently based on the finite element perturbation method, meanwhile its numerical accuracy is well guaranteed by the necessary corrections on residual forces. The essential features of the snap-through response, i.e. the load-limit point, critical deflection and jump deflection, are selected to be either the objective or the constraint in the stacking sequence optimization. The stacking sequence optimization using the genetic algorithm can be realized considering the severe geometrical nonlinearities of mechanics responses, benefiting from the high efficiency and robustness of a single function call. Composite cylindrical shell panels with various geometry/lamination configurations and load/displacement boundary conditions, are considered in the stacking sequence optimizations, to validate the good performance of the proposed method.

MSC:

74G60 Bifurcation and buckling
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74K25 Shells
65D07 Numerical computation using splines
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ye, W.; Liu, J.; Zang, Q.; Lin, G., Investigation of bending behavior for laminated composite magneto-electro-elastic cylindrical shells subjected to mechanical or electric/magnetic loads, Comput. Math. Appl., 80, 1839-1857 (2020) · Zbl 1451.74163
[2] Hao, P.; Wang, B.; Tian, K.; Li, G.; Sun, Y.; Zhou, C. X., Fast procedure for non-uniform optimum design of stiffened shells under buckling constraint, Struct. Multidiscip. Optim., 55, 4, 1503-1516 (2017)
[3] Hao, P.; Liu, X.; Wang, Y.; Liu, D.; Wang, B.; Li, G., Collaborative design of fiber path and shape for complex composite shells based on isogeometric analysis, Comput. Methods Appl. Mech. Eng., 354, 181-212 (2019) · Zbl 1441.74113
[4] Bathe, K. J., Finite Element Procedures in Engineering Analysis (1982), Prentice Hall: Prentice Hall Englewood Cliffs
[5] Wriggers, P.; Simo, J. C., A general procedure for the direct computation on turning and bifurcation points, Int. J. Numer. Methods Eng., 30, 1, 155-176 (1990) · Zbl 0728.73069
[6] Crisfield, M. A., Non-Linear Finite Element Analysis of Solids and Structures (1996), Wiley&Sons: Wiley&Sons London
[7] O’Sullivan, S.; Bird, R. E.; Coombs, W. M.; Giani, S., Rapid non-linear finite element analysis of continuous and discontinuous Galerkin methods in MATLAB, Comput. Math. Appl., 78, 3007-3026 (2019) · Zbl 1443.65362
[8] Jaworska, I., Generalization of the multipoint meshless FDM application to the nonlinear analysis, Comput. Math. Appl., 87, 1-11 (2021) · Zbl 07325130
[9] Ferreira, A. J.M.; Barbosa, J. T., Buckling behaviour of composite shells, Compos. Struct., 50, 93-98 (2000)
[10] Xu, J. X.; Huang, H.; Zhang, P. Z.; Zhou, J. Q., Dynamic stability of shallow ach with elastic supports—application in the dynamic stability analysis of inner winding of transformer during short circuit, Int. J. Non-Linear Mech., 37, 909-920 (2002) · Zbl 1346.74013
[11] Chandra, Y.; Stanciulescu, I.; Eason, T.; Spottswood, M., Numerical pathologies in snap-through simulations, Eng. Struct., 34, 495-504 (2012)
[12] Chandra, Y.; Stanciulescu, I.; Virgin, L. N.; Eason, T.; Spottswood, M., A numerical investigation of snap-through in a shallow arch-like model, J. Sound Vib., 332, 2532-2548 (2013)
[13] Zhou, Y.; Stanciulescu, I.; Eason, T.; Spottswood, M., Nonlinear elastic buckling and postbuckling analysis of cylindrical panels, Finite Elem. Anal. Des., 96, 41-50 (2015)
[14] Soltanieh, G.; Kabir, M. Z.; Shariyat, M., Snap instability of shallow laminated cylindrical shells reinforced with functionally graded shape memory alloy wires, Compos. Struct., 180, 581-595 (2017)
[15] Babaei, H.; Eslami, M. R., On nonlinear vibration and snap-through buckling of long FG porous cylindrical panels using nonlocal strain gradient theory, Compos. Struct., 256, Article 113125 pp. (2021)
[16] Kabir, H.; Aghdam, M. M., A robust Bézier based solution for nonlinear vibration and post-buckling of random checkerboard graphene nano-platelets reinforced composite beams, Compos. Struct., 212, 184-198 (2019)
[17] Babaei, H.; Shahidi, A. R., Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method, Arch. Appl. Mech., 81, 8, 1051-1062 (2011) · Zbl 1271.74081
[18] Guo, Y.; Do, H.; Ruess, M., Isogeometric stability analysis of thin shells: from simple geometries to engineering models, Int. J. Numer. Methods Eng., 118, 8, 433-458 (2019)
[19] Rahimi, G. H.; Zandi, M.; Rasouli, S. F., Analysis of the effect of stiffener profile on buckling strength in composite isogrid stiffened shell under axial loading, Aerosp. Sci. Technol., 24, 1, 198-203 (2013)
[20] Jang, T. S.; Rhee, J.; Hyun, B.-S.; Seo, H.-S.; Kim, T. Y.; Seo, J. K., A study on grid-stiffened multi-functional composite structures with radiation spot shielding, Aerosp. Sci. Technol., 54, 330-339 (2016)
[21] Wu, Z.; Raju, G.; Weaver, P. M., Postbuckling analysis of variable angle tow composite plates, Int. J. Solids Struct., 50, 1770-1780 (2013)
[22] Hao, P.; Wang, B.; Li, G.; Meng, Z.; Tian, K.; Tang, X. H., Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method, Thin-Walled Struct., 82, 46-54 (2014)
[23] Wang, B.; Tian, K.; Zhou, C.; Hao, P.; Zheng, Y.; Ma, Y.; Wang, J., Grid-pattern optimization framework of novel hierarchical stiffened shells allowing for imperfection sensitivity, Aerosp. Sci. Technol., 62, 114-121 (2017)
[24] Hao, P.; Liu, C.; Yuan, X.; Wang, B.; Li, G.; Zhu, T.; Niu, F., Buckling optimization of variable-stiffness composite panels based on flow field function, Compos. Struct., 181, 240-255 (2017)
[25] Vosoughi, A. R.; Darabi, A.; Anjabin, N.; Topal, U., A mixed finite element and improved genetic algorithm method for maximizing buckling load of stiffened laminated composite plates, Aerosp. Sci. Technol., 70, 378-387 (2017)
[26] Nikbakt, S.; Kamarian, S.; Shakeri, M., A review on optimization of composite structures Part I: Laminated composites, Compos. Struct., 195, 158-185 (2018)
[27] Wang, L.; Liang, J. X.; Chen, W. P.; Qiu, Z. P., A nonprobabilistic reliability-based topology optimization method of compliant mechanisms with interval uncertainties, Int. J. Numer. Methods Eng., 119, 13, 1419-1438 (2019)
[28] Wang, C.; Matthies, H. G., Epistemic uncertainty-based reliability analysis for engineering system with hybrid evidence and fuzzy variables, Comput. Methods Appl. Mech. Eng., 355, 438-455 (2019) · Zbl 1441.62255
[29] Dung, D. V.; Hoa, L. K., Nonlinear buckling and post-buckling analysis of eccentrically stiffened functionally graded circular cylindrical shells under external pressure, Thin-Walled Struct., 63, 117-124 (2013)
[30] Wu, Z.; Raju, G.; Weaver, P. M., Analysis and design for the moderately deep postbuckling behavior of composite plates, J. Aircr., 1, 1, 1-9 (2016)
[31] Mania, R. J.; Madeo, A.; Zucco, G.; Kubiak, T., Imperfection sensitivity of post-buckling of FML channel section column, Thin-Walled Struct., 114, 32-38 (2017)
[32] Garcea, G.; Madeo, A.; Zagari, G.; Casciaro, R., Asymptotic postbuckling fem analysis using co-rotational formulation, Int. J. Solids Struct., 46, 377-397 (2009) · Zbl 1168.74350
[33] Rahman, T.; Ijsselmuiden, S. T.; Abdalla, M. M.; Jansen, E. L., Postbuckling analysis of variable stiffness composite plates using a finite element-based perturbation method, Int. J. Struct. Stab. Dyn., 11, 4, 735-753 (2011)
[34] Henrichsen, S. R.; Weaver, P. M.; Lindgaard, E.; Lund, E., Post-buckling optimization of composite structures using Koiter’s method, Int. J. Numer. Methods Eng., 108, 8, 902-940 (2016)
[35] Madeo, A.; Groh, R. M.J.; Zucco, G.; Weaver, P. M.; Zagari, G.; Zinno, R., Post-buckling analysis of variable-angle tow composite plates using Koiter’s approach and the finite element method, Thin-Walled Struct., 110, 1-13 (2017)
[36] Luo, K.; Liu, C.; Tian, Q.; Hu, H. Y., An efficient model reduction method for buckling analyses of thin shells based on IGA, Comput. Methods Appl. Mech. Eng., 309, 243-268 (2016) · Zbl 1439.74128
[37] Magisano, D.; Liang, K.; Garcea, G.; Leonetti, L.; Ruess, M., An efficient mixed variational reduced order model formulation for non-linear analyses of elastic shells, Int. J. Numer. Methods Eng., 113, 634-655 (2018)
[38] Salerno, G.; Casciaro, R., Mode jumping and attractive paths in multimode elastic buckling, Int. J. Numer. Methods Eng., 40, 5, 833-861 (1997) · Zbl 0886.73019
[39] Kouhia, R.; Mikkola, M., Tracing the equilibrium path beyond compound critical points, Int. J. Numer. Methods Eng., 46, 7, 1049-1074 (1999) · Zbl 0967.74065
[40] Tiso, P., Finite element based reduction methods for static and dynamic analysis of thin-walled structures (2006), Delft University of Technology, Ph.D. thesis
[41] Damil, N.; Potier-Ferry, M., A new method to compute perturbed bifurcations: application to the buckling of imperfect elastic structures, Int. J. Eng. Sci., 28, 9, 943-957 (1990) · Zbl 0721.73018
[42] Garcea, G.; Madeo, A.; Zagari, G.; Casciaro, R., Asymptotic postbuckling fem analysis using corotational formulation, Int. J. Solids Struct., 46, 377-397 (2009) · Zbl 1168.74350
[43] Magisano, D.; Leonetti, L.; Garcea, G., Advantages of the mixed format in geometrically nonlinear analysis of beams and shells using solid finite elements, Int. J. Numer. Methods Eng., 109, 9, 1237-1262 (2017)
[44] Liang, K.; Abdalla, M.; Gürdal, Z., A Koiter-Newton approach for nonlinear structural analysis, Int. J. Numer. Methods Eng., 96, 12, 763-786 (2013) · Zbl 1352.74122
[45] Liang, K.; Ruess, M.; Abdalla, M., The Koiter-Newton approach using von Kármán kinematics for buckling analyses of imperfection sensitive structures, Comput. Methods Appl. Mech. Eng., 279, 1, 440-468 (2014) · Zbl 1423.74345
[46] Liang, K.; Ruess, M.; Abdalla, M., Co-rotational finite element formulation used in the Koiter-Newton method for nonlinear buckling analyses, Finite Elem. Anal. Des., 116, 38-54 (2016)
[47] Liang, K.; Ruess, M.; Abdalla, M., An eigenanalysis-based bifurcation indicator proposed in the framework of a reduced-order modeling technique for non-linear structural analysis, Int. J. Non-Linear Mech., 81, 1, 129-138 (2016)
[48] Liang, K.; Sun, Q., An accurate and efficient implementation of initial geometrical imperfections in the predictor-corrector reduced-order modeling method, Comput. Math. Appl., 79, 3429-3446 (2020) · Zbl 1440.74152
[49] Koiter, W. T., On the stability of the elastic equilibrium (1945), Delft University of Technology, Ph.D. thesis
[50] Sze, K. Y.; Liu, X. H.; Lo, S. H., Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elem. Anal. Des., 40, 11, 1551-1569 (2004)
[51] Andrade, L. G.; Awruch, A. M.; Morsch, I. B., Geometrically nonlinear analysis of laminate composite plates and shells using the eight-node hexahedral element with one-point integration, Compos. Struct., 79, 4, 571-580 (2007)
[52] Liang, K.; Abdalla, M. M.; Sun, Q., A modified Newton-type Koiter-Newton method for tracing the geometrically nonlinear response of structures, Int. J. Numer. Methods Eng., 113, 10, 1541-1560 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.