×

Reducing spurious oscillations in discontinuous wave propagation simulation using high-order finite elements. (English) Zbl 1443.65217

Summary: In this paper, a modified explicit time integration scheme is proposed for simulating the propagation of discontinuous waves. The spatial domain is discretized by the finite element method. To obtain accurate results, the standard finite element method requires a very fine mesh, which is why the computational effort can be very time consuming. The use of high-order finite element methods-such as the spectral element method based on Lagrange polynomials through Gauss-Lobatto-Legendre points or the iso-geometric analysis using non-uniform rational B-splines – can reduce the enormous computational costs significantly, compared to the standard finite element method. However, explicit time integration schemes such as the central difference method cannot eliminate the spurious oscillation near the front wave. The procedure proposed here is basically similar to the explicit method of Noh and Bathe, but the semi-discrete equation of motion is modified by introducing a damping parameter to suit the high-order FEM analysis of the discontinuous wave propagation. The performance due to this modification is tested for one-dimensional wave propagation problems using both lumped and consistent mass matrices. Then, the idea of a combination of the consistent and row sum lumped mass matrices is evaluated. The proposed method is studied also in two-dimensions by considering the Lamb problem of wave propagation. The results are promising enough to provide a better simulation of the discontinuous wave propagation problem.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65L05 Numerical methods for initial value problems involving ordinary differential equations
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bathe, K.-J., Finite Element Procedures (1996), Prentice Hall: Prentice Hall Englewood Cliffs
[2] Bathe, K.-J., Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme, Comput. Struct., 85, 437-445 (2007)
[3] Ihlenburg, F.; Babuška, I., Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM, Comput. Math. Appl., 30, 9-37 (1995) · Zbl 0838.65108
[4] Liu, J.; Sharan, S.; Yao, L., Wave motion and its dispersive properties in a finite element model with distortional elements, Comput. Struct., 52, 205-214 (1994) · Zbl 0894.73165
[5] Guddati, M. N.; Yue, B., Modified integration rules for reducing dispersion error in finite element methods, Comput. Methods Appl. Mech. Engrg., 193, 275-287 (2004) · Zbl 1075.76574
[6] Harari, I., A survey of finite element methods for time-harmonic acoustics, Comput. Methods Appl. Mech. Engrg., 195, 1594-1607 (2006) · Zbl 1122.76056
[7] Lee, R.; Cangellaris, A. C., A study of discretization error in the finite element approximation of wave solutions, IEEE Trans. Antennas and Propagation, 40, 542-549 (1992)
[8] Komatitsch, D.; Barnes, C.; Tromp, J., Simulation of anisotropic wave propagation based upon a spectral element method, Geophysics, 65, 1251-1260 (2000)
[9] Kudela, P.; Ostachowicz, W., 3D time-domain spectral elements for stress waves modelling, J. Phys. Conf. Ser., 012091 (2009), IOP Publishing
[10] Patera, A., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54, 3, 20 (1984) · Zbl 0535.76035
[11] Seriani, G.; Oliveira, S., Dispersion analysis of spectral element methods for elastic wave propagation, Wave Motion, 45, 729-744 (2008) · Zbl 1231.74185
[12] Hughes, T. J.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104-4124 (2008) · Zbl 1194.74114
[13] Cottrell, J.; Hughes, T.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Engrg., 196, 4160-4183 (2007) · Zbl 1173.74407
[14] Willberg, C.; Duczek, S.; Vivar Perez, J.; Schmicker, D.; Gabbert, U., Comparison of different higher order finite element schemes for the simulation of Lamb waves, Comput. Methods Appl. Mech. Engrg., 241, 246-261 (2012) · Zbl 1353.74077
[15] Duczek, S.; Joulaian, M.; Düster, A.; Gabbert, U., Numerical analysis of Lamb waves using the finite and spectral cell methods, Internat. J. Numer. Methods Engrg. (2014) · Zbl 1352.74144
[16] Joulaian, M.; Duczek, S.; Gabbert, U.; Düster, A., Finite and spectral cell method for wave propagation in heterogeneous materials, Comput. Mech., 1-15 (2013)
[17] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[18] Ainsworth, M.; Wajid, H. A., Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration, SIAM J. Numer. Anal., 48, 346-371 (2010) · Zbl 1213.65129
[19] Crisfield, M. A.; Remmers, J. J.; Verhoosel, C. V., Nonlinear Finite Element Analysis of Solids and Structures (2012), John Wiley & Sons · Zbl 1300.74002
[20] Seriani, G.; Oliveira, S. P., Optimal blended spectral-element operators for acoustic wave modeling, Geophysics, 72, SM95-SM106 (2007)
[21] Noh, G.; Bathe, K.-J., An explicit time integration scheme for the analysis of wave propagations, Comput. Struct., 129, 178-193 (2013)
[22] Park, K.; Lim, S.; Huh, H., A method for computation of discontinuous wave propagation in heterogeneous solids: basic algorithm description and application to one-dimensional problems, Internat. J. Numer. Methods Engrg., 91, 622-643 (2012)
[23] Underwood, P.; Park, K., A variable-step central difference method for structural dynamics analysis-part 2. Implementation and performance evaluation, Comput. Methods Appl. Mech. Engrg., 23, 259-279 (1980) · Zbl 0439.73078
[24] Wu, B.; Bao, H.; Ou, J.; Tian, S., Stability and accuracy analysis of the central difference method for real-time substructure testing, Earthq. Eng. Struct. Dyn., 34, 705-718 (2005)
[25] Maheo, L.; Grolleau, V.; Rio, G., Numerical damping of spurious oscillations: a comparison between the bulk viscosity method and the explicit dissipative Tchamwa-Wielgosz scheme, Comput. Mech., 51, 109-128 (2013) · Zbl 1398.74366
[26] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 235-394 (1992) · Zbl 0763.73052
[29] Mahéo, L.; Grolleau, V.; Rio, G., Damping efficiency of the Tchamwa-Wielgosz explicit dissipative scheme under instantaneous loading conditions, C. R. Méc., 337, 722-732 (2009) · Zbl 1300.74052
[30] Karniadakis, G.; Sherwin, S., Spectral/Hp Element Methods for Computational Fluid Dynamics (2013), Oxford University Press · Zbl 1256.76003
[31] Komatitsch, D.; Tromp, J., Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. J. Int., 139, 806-822 (1999)
[32] Komatitsch, D.; Vilotte, J.-P., The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seismol. Soc. Amer., 88, 368-392 (1998) · Zbl 0974.74583
[33] Kudela, P.; Ostachowicz, W.; Zak, A., Damage detection in composite plates with embedded PZT transducers, Mech. Syst. Signal Process., 22, 1327-1335 (2008)
[34] Kudela, P.; Zak, A.; Krawczuk, M.; Ostachowicz, W., Modelling of wave propagation in composite plates using the time domain spectral element method, J. Sound Vib., 302, 728-745 (2007) · Zbl 1242.74044
[35] Li, F.; Peng, H.; Sun, X.; Wang, J.; Meng, G., Wave propagation analysis in composite laminates containing a delamination using a three-dimensional spectral element method, Math. Probl. Eng., 2012 (2012) · Zbl 1264.74279
[36] Ostachowicz, W.; Kudela, P.; Krawczuk, M.; Zak, A., Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method (2011), John Wiley & Sons
[37] Peng, H.; Meng, G.; Li, F., Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection, J. Sound Vib., 320, 942-954 (2009)
[38] Seriani, G., Double-grid Chebyshev spectral elements for acoustic wave modeling, Wave Motion, 39, 351-360 (2004) · Zbl 1163.74438
[39] Seriani, G.; Su, C., Wave propagation modeling in highly heterogeneous media by a poly-grid Chebyshev spectral element method, J. Comput. Acoust., 20 (2012) · Zbl 1360.76195
[40] Zak, A.; Radzieński, M.; Krawczuk, M.; Ostachowicz, W., Damage detection strategies based on propagation of guided elastic waves, Smart Mater. Struct., 21, 035024 (2012)
[41] Gopalakrishnan, S.; Chakraborty, A.; Roy Mahapatra, D., Spectral Finite Element Method-Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures (2008), Springer: Springer London · Zbl 1145.74001
[42] Chaljub, E.; Komatitsch, D.; Vilotte, J.-P.; Capdeville, Y.; Valette, B.; Festa, G., Spectral-element analysis in seismology, Adv. Geophys., 48, 365-419 (2007)
[43] Cohen, G., Higher-Order Numerical Methods for Transient Wave Equations (2002), Springer · Zbl 0985.65096
[44] Komatitsch, D.; Liu, Q.; Tromp, J.; Süss, P.; Stidham, C.; Shaw, J. H., Simulations of ground motion in the Los Angeles basin based upon the spectral-element method, Bull. Seismol. Soc. Amer., 94, 187-206 (2004)
[45] Komatitsch, D.; Tromp, J., Spectral-element simulations of global seismic wave propagation—I. Validation, Geophys. J. Int., 149, 390-412 (2002)
[46] Kudela, P.; Krawczuk, M.; Ostachowicz, W., Wave propagation modelling in 1D structures using spectral finite elements, J. Sound Vib., 300, 88-100 (2007)
[47] Piegl, L.; Tiller, W., The NURBS book (1997), Springer · Zbl 0868.68106
[48] Nsiampa, N.; Ponthot, J.-P.; Noels, L., Comparative study of numerical explicit schemes for impact problems, Int. J. Impact Eng., 35, 1688-1694 (2008)
[50] Duczek, S.; Joulaian, M.; Düster, A.; Gabbert, U., Numerical analysis of Lamb waves using the finite and spectral cell method, Internat. J. Numer. Methods Engrg., 99, 26-53 (2014) · Zbl 1352.74144
[51] Stronge, W. J., Impact Mechanics (2004), Cambridge University Press · Zbl 0961.74002
[52] Clough, R. W.; Penzien, J., Dynamics of Structures (1975) · Zbl 0357.73068
[53] Christon, M. A., The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation, Comput. Methods Appl. Mech. Engrg., 173, 147-166 (1999) · Zbl 0964.76038
[54] Yue, B.; Guddati, M. N., Dispersion-reducing finite elements for transient acoustics, J. Acoust. Soc. Am., 118, 2132-2141 (2005)
[55] Ham, S.; Bathe, K.-J., A finite element method enriched for wave propagation problems, Comput. Struct., 94, 1-12 (2012)
[56] Aki, K.; Richards, P. G., Quantitative Seismology (2002), University Science Books
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.