×

Effect of using nanofluids on the performance of rotating heat pipe. (English) Zbl 1443.80016

Summary: Nanofluids have novel properties that make them potentially useful in many heat transfer applications. This paper presents a study on the effect of using nanofluids on the performance of rotating heat pipe. The effect of using nanofluids on the heat transfer and liquid film thickness is carried out. Three solid nanoparticles are used Cu, CuO and \(\mathrm{Al}_{2}\mathrm{O}_{3}\) at different nanoparticles radiuses and volume fractions with water as working fluid. A mathematical model is presented of the rotating heat pipe including vapor velocity, gravity and taper angle effects. The study is carried out at different rotation speeds (\(\omega\)), temperatures differences of the heat pipe (\(\Delta T\)) and masses of working fluid of the heat pipe. For a given mass introduced to the rotating heat pipe, using of nanofluids with the heat pipe decreases the liquid film thickness adjacent to its walls and increases the heat transfer by the heat pipe compared with essential fluid. The results show that the heat transfer by rotating heat pipe increases with increase \(\Delta T\) and volume fraction and radius of solid nanoparticles and with decrease condenser taper angle. The maximum heat transfer by rotating heat pipe increases with using nanofluids despite of increasing the minimum mass introduced the heat pipe. Rotating heat pipes with Cu-water nanofluid have maximum heat transfer compared with CuO-water and Al\(_{2}\)O\(_{3}\)-water nanofluids. The maximum heat transfer by rotating heat pipe at \(\Delta T=20\, {}^{°}C\) and \(\omega=3000 \,\mathrm{rpm}\) increases by about 56% due to using Cu-water nanofluid with Cu nanoparticles of volume fraction 0.04 and radius 5nm.

MSC:

80A19 Diffusive and convective heat and mass transfer, heat flow
76T10 Liquid-gas two-phase flows, bubbly flows
76T20 Suspensions
82D80 Statistical mechanics of nanostructures and nanoparticles
PDFBibTeX XMLCite
Full Text: DOI

References:

[4] Lin, L.; Faghri, A., Heat transfer in micro region of a rotating miniature heat pipe, Int. J. Heat Mass Transfer, 42, 1363-1369 (1999) · Zbl 0954.76501
[6] Faghri, A., Heat Pipe Science and Technology (1995), Taylor & Francis: Taylor & Francis Washington, DC
[7] Lin, L.; Faghri, A., Steady state performance of a rotating miniature heat pipe, J. Thermophys. Heat Transfer, 11, 4, 513-518 (1997)
[8] Li, H. M.; Liu, C. Y.; Damodaran, M., Analytical study of the flow and heat transfer in a rotating heat pipe, Heat Recovery Syst. CHP, 13, 2, 115-122 (1993)
[9] Faghri, A.; Gogineni, S.; Thomas, S., Vapor flow analysis of an axially rotating heat pipe, Int. J. Heat Mass Transfer, 36, 9, 2293-2303 (1993)
[10] Waowaev, N.; Terdtoon, P.; Maezawa, S.; Kamonpet, P.; Klongpanich, W., Correlation to predict heat transfer characteristic of a radially rotating heat pipe at vertical position, Appl. Therm. Eng., 23, 8, 1019-1032 (2003)
[11] Waowaew, N.; Klinbun, J.; Terdtoon, P.; Maezawa, S.; Kamonpet, P.; Wongratanapaisarn, T., Heat transfer characteristics of radially rotating heat pipe at normal operating condition: effect of aspect ratios an rotational acceleration, Symp. Flight Mech. Astrodyn., 84-89 (2002)
[12] Song, F.; Ewing, D.; Ching, C. Y., Experimental investigation on the heat transfer characteristics of axial rotating heat pipes, Int. J. Heat Mass Transfer, 47, 4721-4731 (2004)
[13] Yau, Y. H.; Foo, Y. C., Comparative study on evaporator heat transfer characteristics of revolving heat pipes filled with R134a, R22 and R410A, Int. Commun. Heat Mass Transfer, 38, 202-211 (2011)
[14] Bertossi, R.; Guilhem, N.; Ayel, V.; Romestant, C.; Bertin, Y., Modeling of heat and mass transfer in the liquid film of rotating heat pipes, Int. J. Therm. Sci., 52, 40-49 (2012)
[16] Shafahi, M.; Bianco, V.; Vafai, K.; Manca, O., An investigation of the thermal performance of cylindrical heat pipes using nanofluids, Int. J. Heat Mass Transfer, 53, 376-383 (2010) · Zbl 1180.80043
[17] Sureshkumar, R.; Mohideen, S. T.; Nethaji, N., Heat transfer characteristics of nanofluids in heat pipes: a review, Renew. Sustainable Energy Rev., 20, 397-410 (2013)
[18] Hassan, H.; Harmand, S., 3D transient model of vapour chamber: effect of nano fluids on its performance, Appl. Therm. Eng., 51, 1191-1201 (2013)
[19] Bachok, N.; Ishak, Anuar; Pop, I., Flow and heat transfer over a rotating porous disk in a nanofluid, Physica B, 406, 1767-1772 (2011)
[20] Yadav, D.; Agrawal, G. S.; Bhargava, R., Thermal instability of rotating nanofluid layer, Int. J. Eng. Sci., 49, 1171-1184 (2011) · Zbl 1423.76474
[21] Sun, C.; Qiang, W.; Liu, J.; Bai, B., Molecular dynamics simulation of nanofluid’s effective thermal conductivity in high-shear-rate Couette flow, Int. J. Heat Mass Transfer, 54, 2560-2567 (2011) · Zbl 1255.82079
[22] Chand, R.; Rana, G. C., On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium, Int. J. Heat Mass Transfer, 55, 5417-5424 (2012)
[23] Chand, R., Thermal instability of rotating nanofluid, Int. J. Appl. Math. Mech., 9, 3, 70-90 (2013)
[24] Daniels, T. C.; Jumaily, F. K., Investigations of the factors affecting the performance of a rotating heat pipe, Int. J. Heat Mass Transfer, 18, 961-973 (1975)
[25] Song, F.; Ewing, D.; Ching, C. Y., Fluid flow and heat transfer model for high-speed rotating heat pipes, Int. J. Heat Mass Transfer, 46, 23, 4393-4401 (2003)
[26] Brinkman, H. C., The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571-581 (1952)
[27] Oztop, H. F.; Abu-Nada, E., Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29, 1326-1336 (2008)
[28] Aminossadati, S. M.; Ghasemi, B., Natural convection of water-CuO nanofluid in a cavity with two pairs of heat source-sink, Int. Commun. Heat Mass Transfer, 38, 672-678 (2011)
[29] Hashemi, S. M.H.; Fazeli, S. A.; Zirakzadeh, H.; Ashjaee, M., Study of heat transfer enhancement in a nanofluid-cooled miniature heat sink, Int. Commun. Heat Mass Transfer, 39, 877-884 (2012)
[30] Maxwell, J., A Treatise on Electricity and Magnetism (1904), Oxford, University Press: Oxford, University Press Cambridge, UK · JFM 05.0556.01
[31] Aminossadati, S. M.; Ghasemi, B., Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid, Comput. Math. Appl., 61, 1739-1753 (2001) · Zbl 1219.76047
[32] HyungK, D.; Jang, S. P., Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick, Int. J. Heat Mass Transfer, 53, 2183-2192 (2010) · Zbl 1191.80011
[33] Shafahi, M.; Bianco, V.; Vafai, K.; Manca, O., Thermal performance of flat-shaped heat pipes using nanofluids, Int. J. Heat Mass Transfer, 53, 1438-1445 (2010) · Zbl 1183.80057
[35] Nisha, M. R.; Jayalakshmy, M. S.; Philip, J., Effective thermal conductivity of condensed polymeric nanofluids (nanosolids) controlled by diffusion and interfacial scattering, Indian Acad. Sci., 81, 849-864 (2013)
[36] Eberhart, R. C.; Shi, Y. H., Particle swarm optimization: developments, applications and resources, Proc. IEEE Congr. Evol. Comput., 81-86 (2001)
[38] Li, X. D.; Engelbrecht, A. P., Particle swarm optimization: an introduction and its recent developments, Proc. Genetic Evol. Comput. Conf., 3391-3414 (2007)
[39] Zielinski, K.; Laur, R., Stopping criteria for a constrained single-objective particle swarm optimization algorithm, Informatica, 31, 51-59 (2007) · Zbl 1127.68093
[40] Tenga, T. P.; Hsua, H. G.; Mob, H.; Chen, C. C., Thermal efficiency of heat pipe with alumina nanofluid, J. Alloys Compd., 504S, S380-S384 (2010)
[41] Hwang, Y.; Lee, J. K.; Lee, C. H.; Jung, Y. M.; Cheong, S. I.; Lee, C. G.; Ku, B. C.; Jang, S. P., Stability and thermal conductivity characteristics of nanofluids, Thermochim. Acta, 455, 70-74 (2007)
[42] Ogut, E. B., Natural convection of water-based nanofluids in an inclined enclosure with a heat source, Int. J. Therm. Sci., 48, 2063-2073 (2009)
[43] Teng, T.; Hsu, H.; Mo, H.; Chen, C. C., Thermal efficiency of heat pipe with alumina nanofluid, J. Alloys Compd., 504, 380-384 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.