×

A quadratic finite volume method for parabolic problems. (English) Zbl 07787028

Summary: In this paper, a quadratic finite volume method (FVM) for parabolic problems is studied. We first discretize the spatial variables using a quadratic FVM to obtain a semi-discrete scheme. We then employ the backward Euler method and the Crank-Nicolson method respectively to further disctetize the time vatiable so as to derive two full-discrete schemes. The existence and uniqueness of the semi-discrete and full-discrete FVM solutions are established and their optimal error estimates are derived. Finally, we give numerical examples to illustrate the theoretical results.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. ADJERID, M. AIFFA, AND J. E. FLAHERTY, High-order finite element methods for singularly perturbed elliptic and parabolic problems, SIAM J. Appl. Math., 55 (1995), pp. 520-543. · Zbl 0827.65097
[2] S. C. BRENNER AND L. R. SCOTT, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994. · Zbl 0804.65101
[3] P. CHATZIPANTELIDIS, R. D. LAZAROV AND V. THOMEE, Parabolic finite volume element equa-tions in non-convex polygonal domains, Numer. Methods PDEs, 25 (2008), pp. 507-525. · Zbl 1168.65051
[4] P. CHATZIPANTELIDIS, R. D. LAZAROV AND V. THOMEE, Some error estimates for the lumped mass finite element method for a parabolic problem, Math. Comput., 81 (2012), pp. 1-20. · Zbl 1251.65129
[5] L. CHEN, A new class of high order finite volume methods for second order elliptic equations, SIAM J. Numer. Anal., 47 (2010), pp. 4021-4043. · Zbl 1261.65109
[6] P. CHEN, J. SUN, C. LIN AND W. ZHOU, Application of the finite volume method for geomechanics calculation and analysis on temperature dependent poromechanical stress and displacement fields in enhanced geothermal system, Geothermics, 95 (2021), p. 102138.
[7] Z. CHEN AND J. FENG, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems, Math. Comput., 73 (2004), pp. 1167-1193. · Zbl 1052.65091
[8] Z. CHEN, J. WU AND Y. XU, Higher-order finite volume methods for elliptic boundary value problem, Adv. Comput. Math., 37 (2012), pp. 191-253. · Zbl 1266.65180
[9] Z. CHEN, Y. XU, AND Y. ZHANG, A construction of higher-order finite volume methods, Math. Comput., 84 (2015), pp. 599-628. · Zbl 1307.65144
[10] S. CHOU AND Q. LI, Error estimates in L 2 , H 1 , and L ∞ in covolume methods for elliptic and parabolic problems: A unified approach, Math. Comput., 69 (2000), pp. 103-120. · Zbl 0936.65127
[11] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amster-dam, 1978. · Zbl 0383.65058
[12] F. GAO AND D. LIANG, A new weighted upwind finite volume element method based on non-standard covolume for time-dependent convection-diffusion problems, Int. J. Numer. Meth. Fl., 73 (2013), pp. 953-975. · Zbl 1455.76112
[13] G. GAO AND T. WANG, Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic equations, J. Comput. Appl. Math., 233 (2010), pp. 2285-2301. · Zbl 1197.65171
[14] R. LI, Z. CHEN AND W. WU, Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Marcel Dekker, New York, 2000. · Zbl 0940.65125
[15] F. LIEBAU, The finite volume element method with quadratic basis finctions, Computing, 57 (1996), pp. 281-299. · Zbl 0866.65074
[16] Y. LIU AND Y. NIE, A priori and a posteriori error estimates of the weak Galerkin finite element method for parabolic problems, Comput. Math. Appl., 99 (2021), pp. 73-83. · Zbl 1524.65571
[17] X. MA, S. SHI AND A. ZHOU, Symmetric finite volume discretizations for parabolic problems, Comput. Methods Appl. Mech. Eng., 192 (2003), pp. 4467-4485. · Zbl 1038.65079
[18] X. MAKRIDAKII AND I. BABUSKA, On the stability of the discontinuous Galerkin method for the heat equation, SIAM J. Numer. Anal., 34 (1997), pp. 389-401. · Zbl 0873.65095
[19] S. C. MISHRA AND H. K. ROY, Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method, J. Comput. Phys., 223 (2007), pp. 89-107. · Zbl 1163.80304
[20] R. A. NICOLAIDES, T. A. PORSHING AND C. A. HALL, Covolume methods in computational fluid dynamics, Comput. Fluid D. Rev., (1995), pp. 279-299. · Zbl 0875.76410
[21] R. K. SINHA AND J. GEISER, Error estimates for finite volume element methods for convection-diffusion-reaction equations, Appl. Numer. Math., 57 (2007), pp. 59-72. · Zbl 1175.65106
[22] I. SOKOLOVA, M. G. BASTISYA AND H. HAJIBEYGI, Multiscale finite volume method for finite-volume-based simulation of poroelasticity, J. Comput. Phys., 379 (2019), pp. 309-324. · Zbl 07581574
[23] O. J. SUTTON, Long-time L ∞ (L 2 ) a posteriori error estimates for fully discrete parabolic problems, IMA J. Numer. Anal., 40 (2020), pp. 498-529. · Zbl 1466.65147
[24] V. THOMEE, Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, New York, 1997. · Zbl 0884.65097
[25] X. WANG AND Y. LI, L 2 error estimates for high order finite volume methods on triangular meshes, SIAM J. Numer. Anal., 54 (2016), pp. 2729-2749. · Zbl 1348.65155
[26] J. XU AND Q. ZOU, Analysis of linear and quadratic simplicial finite volume methods for elliptic equation, Numer. Math., 111 (2009), pp. 469-492. · Zbl 1169.65110
[27] M. YANG, J. LIU AND Q. ZOU, Unified analysis of higher-order finite volume methods for parabolic problems on quadrilateral meshes, IMA J. Numer. Anal., 36 (2016), pp. 872-896. · Zbl 1433.65179
[28] C. YU AND Y. LI, Biquadratic finite volume element methods based on optimal stress points for parabolic problems, J. Comput. Appl. Math., 236 (2011), pp. 1055-1068. · Zbl 1242.65180
[29] R. ZHANG, L. ZHANG, J. LUO, Z. YANG AND M. XU, Numerical simulation of water flooding in natural fractured reservoirs based on control volume finite element method, J. Petrol. Sci. Eng., 146 (2016), pp. 1211-1225.
[30] Y. ZHANG AND D. SHI, Superconvergence of an H 1 -Galerkin nonconforming mixed finite element method for a parabolic equation, Comput. Math. Appl., 66 (2013), pp. 2362-2375. · Zbl 1350.65098
[31] Y. ZHANG AND M. YANG, A posteriori error analysis of any order finite volume methods for elliptic problems, Adv. Appl. Math. Mech., 12 (2020), pp. 564-578. · Zbl 1488.65680
[32] S. ZHOU, F. GAO, B. LI AND Z. SUN, Weak Galerkin finite element method with second-order accuracy in time for parabolic problems, Appl. Math. Lett., 90 (2019), pp. 118-123. · Zbl 1410.65387
[33] Q. ZOU, An unconditionally stable quadratic finite volume scheme over triangular meshes for elliptic equations, J. Sci. Comput., 70 (2017), pp. 112-124. · Zbl 1364.65227
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.