×

The dependence of spike field coherence on expected intensity. (English) Zbl 1231.92023

Summary: The coherence between neural spike trains and local-field potential recordings, called spike-field coherence, is of key importance in many neuroscience studies. Aside from questions of estimator performance, we demonstrate that theoretical spike-field coherence for a broad class of spiking models depends on the expected rate of spiking. This rate dependence confounds the phase locking of spike events to field-potential oscillations with overall neuron activity and is demonstrated analytically, for a large class of stochastic models, and in simulations. Finally, the relationship between the spike-field coherence and the intensity field coherence is detailed analytically. This latter quantity is independent of the neuron firing rate and, under commonly found conditions, is proportional to the probability that a neuron spikes at a specific phase of field oscillation. Hence, intensity field coherence is a rate-independent measure and a candidate on which to base the appropriate statistical inference of spike field synchrony.

MSC:

92C20 Neural biology
92B20 Neural networks for/in biological studies, artificial life and related topics
62P10 Applications of statistics to biology and medical sciences; meta analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/S0165-0270(96)02214-5 · doi:10.1016/S0165-0270(96)02214-5
[2] Bartlett M. S., Journal of the Royal Statistical Society, Series B (Methodological) 25 (2) pp 264– (1963)
[3] Bartlett M. S., Introduction to stochastic processes: With special reference to methods and applications, 3. ed. (1981)
[4] DOI: 10.1016/j.tins.2007.05.008 · doi:10.1016/j.tins.2007.05.008
[5] DOI: 10.1523/JNEUROSCI.2699-08.2008 · doi:10.1523/JNEUROSCI.2699-08.2008
[6] DOI: 10.1137/1.9780898719246 · Zbl 0983.62056 · doi:10.1137/1.9780898719246
[7] DOI: 10.1007/s00422-008-0289-y · Zbl 1342.92040 · doi:10.1007/s00422-008-0289-y
[8] DOI: 10.1016/j.ijpsycho.2003.07.001 · doi:10.1016/j.ijpsycho.2003.07.001
[9] DOI: 10.1073/pnas.92.25.11568 · doi:10.1073/pnas.92.25.11568
[10] DOI: 10.1126/science.1099745 · doi:10.1126/science.1099745
[11] DOI: 10.1126/science.1589772 · doi:10.1126/science.1589772
[12] DOI: 10.1126/science.1128115 · doi:10.1126/science.1128115
[13] DOI: 10.1016/j.neuron.2010.03.013 · doi:10.1016/j.neuron.2010.03.013
[14] DOI: 10.1029/JB092iB01p00633 · doi:10.1029/JB092iB01p00633
[15] Daley D. J., An introduction to the theory of point processes (2003) · Zbl 1026.60061
[16] DOI: 10.1073/pnas.0700818104 · doi:10.1073/pnas.0700818104
[17] DOI: 10.1152/jn.00108.2007 · doi:10.1152/jn.00108.2007
[18] DOI: 10.1190/1.1439878 · doi:10.1190/1.1439878
[19] DOI: 10.1126/science.1055465 · doi:10.1126/science.1055465
[20] DOI: 10.1523/JNEUROSCI.4499-07.2008 · doi:10.1523/JNEUROSCI.4499-07.2008
[21] DOI: 10.1126/science.1171402 · doi:10.1126/science.1171402
[22] DOI: 10.1016/S0079-6107(96)00009-0 · doi:10.1016/S0079-6107(96)00009-0
[23] DOI: 10.1029/RG006i003p00347 · doi:10.1029/RG006i003p00347
[24] DOI: 10.1162/089976601300014312 · Zbl 1006.62092 · doi:10.1162/089976601300014312
[25] DOI: 10.1523/JNEUROSCI.0640-09.2009 · doi:10.1523/JNEUROSCI.0640-09.2009
[26] Koch C., Biophysics of computation (1999)
[27] DOI: 10.1016/j.neuroimage.2007.03.025 · doi:10.1016/j.neuroimage.2007.03.025
[28] DOI: 10.1017/CBO9781139644105 · doi:10.1017/CBO9781139644105
[29] Mitra P., Observed brain dynamics (2008)
[30] DOI: 10.1073/pnas.0701826104 · doi:10.1073/pnas.0701826104
[31] DOI: 10.1029/RG006i004p00447 · doi:10.1029/RG006i004p00447
[32] DOI: 10.1016/S0013-4694(97)00066-7 · doi:10.1016/S0013-4694(97)00066-7
[33] Oppenheim A. V., Discrete-time signal processing, 3. ed. (2009)
[34] DOI: 10.1017/CBO9780511622762 · Zbl 0796.62077 · doi:10.1017/CBO9780511622762
[35] DOI: 10.1016/j.pneurobio.2005.10.003 · doi:10.1016/j.pneurobio.2005.10.003
[36] DOI: 10.1038/nature06849 · doi:10.1038/nature06849
[37] DOI: 10.1038/nn890 · doi:10.1038/nn890
[38] Priestly M. B., Journal of the Royal Statistical Society, Series B (Methodological) 27 (2) pp 204– (1965)
[39] Priestly M. B., Spectral analysis and time series (1981)
[40] DOI: 10.1016/S0165-0270(98)00061-2 · doi:10.1016/S0165-0270(98)00061-2
[41] Ross S. M., Introduction to probability models, 10. ed. (2009)
[42] DOI: 10.1109/78.890359 · Zbl 1369.62238 · doi:10.1109/78.890359
[43] DOI: 10.1109/2944.796348 · doi:10.1109/2944.796348
[44] DOI: 10.1146/annurev.ne.18.030195.003011 · doi:10.1146/annurev.ne.18.030195.003011
[45] DOI: 10.1016/j.neuron.2008.09.014 · doi:10.1016/j.neuron.2008.09.014
[46] DOI: 10.1109/PROC.1982.12433 · doi:10.1109/PROC.1982.12433
[47] DOI: 10.1097/00004691-199911000-00005 · doi:10.1097/00004691-199911000-00005
[48] DOI: 10.1111/j.1460-9568.2007.05890.x · doi:10.1111/j.1460-9568.2007.05890.x
[49] DOI: 10.1038/nature04258 · doi:10.1038/nature04258
[50] DOI: 10.1016/S1388-2457(99)00136-4 · doi:10.1016/S1388-2457(99)00136-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.