×

Formation-containment control for networked Euler-Lagrange systems with input saturation. (English) Zbl 1390.34074

Summary: This paper studies the formation-containment control problem for networked nonlinear Euler-Lagrange systems with input saturation. To realize the concurrency of leaders’ formation and followers’ containment, coordinated formation and containment control algorithms are designed, respectively, such that the formation-containment of multi-agent systems can be reached. Firstly, to handle the constraint of input saturation, a dynamic auxiliary system is introduced for each agent to obtain some auxiliary variables. Then, based on these auxiliary variables, coordinated saturated formation and containment control algorithms are designed for each leader and follower to achieve formation and containment, respectively. Note that the saturation bound of each agent in many proposed coordinated saturated control algorithms depends on the number of each agent’s neighbors, while the formation-containment system is usually large scale and each agent has many neighbors because there are multiple leaders and followers. Our proposed saturated formation-containment control algorithm has the advantage that the saturation bound of each agent is not related with the number of each agent’s neighbors. Finally, numerical simulation is given to illustrate the effectiveness of the theoretical results.

MSC:

34B45 Boundary value problems on graphs and networks for ordinary differential equations
93C10 Nonlinear systems in control theory
37E25 Dynamical systems involving maps of trees and graphs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. Springer, Dordrecht (2008) · Zbl 1144.93002 · doi:10.1007/978-1-84800-015-5
[2] Kadowaki, Y; Ishii, H, Event-based distributed clock synchronization for wireless sensor networks, IEEE Trans. Autom. Control, 60, 2266-2271, (2015) · Zbl 1360.68157 · doi:10.1109/TAC.2014.2372932
[3] Lee, D; Sanyal, AK; Butcher, EA, Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance, J. Guid. Control Dyn., 38, 587-600, (2015) · doi:10.2514/1.G000101
[4] Olfati-Saber, R; Murray, RM, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49, 1520-1533, (2004) · Zbl 1365.93301 · doi:10.1109/TAC.2004.834113
[5] Qian, Y; Wu, X; Lbnxkjbnf, J; Lu, JA, Consensus of second-order multi-agent systems with nonlinear dynamics and time delay, Nonlinear Dyn., 78, 495-503, (2014) · Zbl 1314.93028 · doi:10.1007/s11071-014-1456-4
[6] Meng, Z; Ren, W; Cao, Y; You, Z, Leaderless and leader-following consensus with communication and input delays under a directed network topology, IEEE Trans. Syst. Man Cybern. Part B Cybern., 41, 75-88, (2011) · doi:10.1109/TSMCB.2010.2045891
[7] Nedic, A; Ozdaglar, A, Distributed subgradient methods for multi-agent optimization, IEEE Trans. Autom. Control, 54, 48-61, (2009) · Zbl 1367.90086 · doi:10.1109/TAC.2008.2009515
[8] Miao, Z; Wang, Y; Fierro, R, Collision-free consensus in multi-agent networks, Automatica, 64, 217-225, (2016) · Zbl 1328.93027 · doi:10.1016/j.automatica.2015.11.025
[9] Wang, X; Hong, Y; Huang, J; Jiang, ZP, A distributed control approach to a robust output regulation problem for multi-agent linear systems, IEEE Trans. Autom. Control, 55, 2891-2895, (2011) · Zbl 1368.93577 · doi:10.1109/TAC.2010.2076250
[10] Cao, Y; Ren, W, Distributed coordinated tracking with reduced interaction via a variable structure approach, IEEE Trans. Autom. Control, 57, 33-48, (2012) · Zbl 1369.93012 · doi:10.1109/TAC.2011.2146830
[11] Hong, Y; Hu, J; Gao, L, Tracking control for multi-agent consensus with an active leader and variable topology, Automatica, 42, 1177-1182, (2006) · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013
[12] Sun, Y; Chen, L; Ma, G; Li, C, Adaptive neural network tracking control for multiple uncertain Euler-Lagrange systems with communication delays, J. Frankl. Inst., 354, 2677-2698, (2017) · Zbl 1364.93409 · doi:10.1016/j.jfranklin.2017.01.021
[13] Chen, L; Lv, Y; Li, C; Ma, G, Cooperatively surrounding control for multiple Euler-Lagrange systems subjected to uncertain dynamics and input constraints, Chin. Phys. B, 25, 128701, (2016) · doi:10.1088/1674-1056/25/12/128701
[14] Wen, G; Duan, Z; Chen, G; Yu, W, Consensus tracking of multi-agent systems with Lipschitz-type node dynamics and switching topologies, IEEE Trans. Circuits Syst. I Regul. Pap., 61, 499-511, (2014) · Zbl 1468.93037 · doi:10.1109/TCSI.2013.2268091
[15] Ji, M; Ferrari-Trecate, G; Egerstedt, M; Buffa, A, Containment control in mobile networks, IEEE Trans. Autom. Control, 53, 1972-1975, (2008) · Zbl 1367.93398 · doi:10.1109/TAC.2008.930098
[16] Asadi, MM; Ajorlou, A; Aghdam, AG, Distributed control of a network of single integrators with limited angular fields of view, Automatica, 63, 187-197, (2016) · Zbl 1329.93006 · doi:10.1016/j.automatica.2015.09.035
[17] Cao, Y; Stuart, D; Ren, W; Meng, Z, Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments, IEEE Trans. Control Syst. Technol., 19, 929-938, (2011) · doi:10.1109/TCST.2010.2053542
[18] Dong, X; Xi, J; Lu, G; Zhong, Y, Formation control for high-order linear time-invariant multiagent systems with time delays, IEEE Trans. Control Netw. Syst., 1, 232-240, (2014) · Zbl 1370.93180 · doi:10.1109/TCNS.2014.2337972
[19] Dong, X; Hu, G, Time-varying output formation for linear multi-agent systems via dynamic output feedback control, IEEE Trans. Control Netw. Syst., PP, 1-1, (2015)
[20] Huang, J; Dou, L; Fang, H; Chen, J; Yang, Q, Distributed backstepping-based adaptive fuzzy control of multiple high-order nonlinear dynamics, Nonlinear Dyn., 81, 1-13, (2015) · Zbl 1347.93161 · doi:10.1007/s11071-014-1321-5
[21] Mei, J; Ren, W; Ma, G, Distributed coordinated tracking with a dynamic leader for multiple Euler-Lagrange systems, IEEE Trans. Autom. Control, 56, 1415-1421, (2011) · Zbl 1368.93432 · doi:10.1109/TAC.2011.2109437
[22] Li, B; Hu, Q; Yu, Y; Ma, G, Observer-based fault-tolerant attitude control for rigid spacecraft, IEEE Trans. Aerosp. Electron. Syst., 53, 2572-2582, (2017) · doi:10.1109/TAES.2017.2705318
[23] Zhao, Y; Duan, Z; Wen, G, Distributed finite-time tracking of multiple Euler-Lagrange systems without velocity measurements, Int. J. Robust Nonlinear Control, 25, 1688-1703, (2015) · Zbl 1328.93043 · doi:10.1002/rnc.3170
[24] Mei, J; Ren, W; Li, B; Ma, G, Distributed containment control for multiple unknown second-order nonlinear systems with application to networked Lagrangian systems, IEEE Trans. Neural Netw. Learn. Syst., 26, 1885-1899, (2015) · doi:10.1109/TNNLS.2014.2359955
[25] Mei, J; Ren, W; Ma, G, Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph, Automatica, 48, 653-659, (2012) · Zbl 1238.93009 · doi:10.1016/j.automatica.2012.01.020
[26] Hu, Q; Zhang, J; Friswell, MI, Finite-time coordinated attitude control for spacecraft formation flying under input saturation, J. Dyn. Syst. Meas. Control, 137, 061012, (2015) · doi:10.1115/1.4029467
[27] Dimarogonas, D.V., Egerstedt, M., Kyriakopoulos, K.J.: A leader-based containment control strategy for multiple unicycles. In: 45th IEEE Conference on Decision and Control, pp. 5968-5973 (2006)
[28] Yu, B., Dong, X., Shi, Z., Zhong, Y.: Formation-containment control for unmanned aerial vehicle swarm system. In: 33rd Chinese Control Conference (CCC), pp. 1517-1523 (2014) · Zbl 1370.93180
[29] Chen, L., Li, C., Sun, Y., Ma, G., Wang, W.: Adaptive formation-containment control for multiple Euler-Lagrange systems with uncertainties and disturbances. In: 35th Chinese Control Conference, pp. 10690-10695 (2016)
[30] Dong, X; Shi, Z; Lu, G; Zhong, Y, Formation-containment analysis and design for high-order linear time-invariant swarm systems, Int. J. Robust Nonlinear Control, 24, 6296-6302, (2014) · Zbl 1287.93006 · doi:10.1002/rnc.2933
[31] Dong, X; Li, Q; Ren, Z; Zhong, Y, Formation-containment control for high-order linear time-invariant multi-agent systems with time delays, J. Frankl. Inst., 352, 3564-3584, (2015) · Zbl 1395.93011 · doi:10.1016/j.jfranklin.2015.05.008
[32] Zheng, B; Mu, X, Formation-containment control of second-order multi-agent systems with only sampled position data, Int. J. Syst. Sci., 47, 3609-3618, (2016) · Zbl 1346.93050 · doi:10.1080/00207721.2015.1107148
[33] Wang, YW; Liu, XK; Xiao, JW; Lin, XN, Output formation-containment of coupled heterogeneous linear systems under intermittent communication, J. Frankl. Inst., 354, 392-414, (2017) · Zbl 1355.93023 · doi:10.1016/j.jfranklin.2016.10.011
[34] Chen, LM; Li, CJ; Mei, J; Ma, GF, Adaptive cooperative formation-containment control for networked Euler-Lagrange systems without using relative velocity information, IET Control Theory Appl., 11, 1450-1458, (2017) · doi:10.1049/iet-cta.2016.1185
[35] Hu, Q, Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits, Nonlinear Dyn., 55, 301-321, (2009) · Zbl 1170.74338 · doi:10.1007/s11071-008-9363-1
[36] Ren, W, On consensus algorithms for double-integrator dynamics, IEEE Trans. Autom. Control, 53, 1503-1509, (2008) · Zbl 1367.93567 · doi:10.1109/TAC.2008.924961
[37] Yang, T; Meng, Z; Dimarogonas, DV; Johansson, KH, Global consensus for discrete-time multi-agent systems with input saturation constraints, Automatica, 50, 499-506, (2014) · Zbl 1364.93036 · doi:10.1016/j.automatica.2013.11.008
[38] Wang, Q; Gao, H, Global consensus of multiple integrator agents via saturated controls, J. Frankl. Inst., 350, 2261-2276, (2013) · Zbl 1293.93064 · doi:10.1016/j.jfranklin.2013.05.032
[39] Lyu, J; Qin, J; Gao, D; Liu, Q, Consensus for constrained multi-agent systems with input saturation, Int. J. Robust Nonlinear Control, 26, 2977-2993, (2016) · Zbl 1346.93029 · doi:10.1002/rnc.3480
[40] Su, H; Chen, MZQ; Wang, X, Global coordinated tracking of multi-agent systems with disturbance uncertainties via bounded control inputs, Nonlinear Dyn., 82, 2059-2068, (2015) · Zbl 1348.93129 · doi:10.1007/s11071-015-2299-3
[41] Abdessameud, A; Tayebi, A, On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints, Syst. Control Lett., 59, 812-821, (2010) · Zbl 1217.93009 · doi:10.1016/j.sysconle.2010.06.019
[42] Kelly, R., Santibanez, V., Loria, A.: Control of Robot Manipulators in Joint Space. Springer, London (2005)
[43] Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)
[44] Lewis, F.L., Zhang, H., Hengster-Movric, K., Das, A.: Cooperative Control of Multi-agent Systems: Optimal and Adaptive Design Approaches. Springer, London (2014) · Zbl 1417.93015 · doi:10.1007/978-1-4471-5574-4
[45] Rockafellar, R.: Convex Analysis. Princeton University Press, New Jersey (1972) · Zbl 0224.49003
[46] Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, INC, New York (1979) · Zbl 0484.15016
[47] Qu, Z.: Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles. Springer, London (2009) · Zbl 1171.93005
[48] Dimarogonas, D; Kyriakopoulos, K, A connection between formation infeasibility and velocity alignment in kinematic multi-agent systems, Automatica, 44, 2648-2654, (2008) · Zbl 1155.93355 · doi:10.1016/j.automatica.2008.03.013
[49] Alfriend, K.T., Vadali, S.R., Gurfil, P., How, J., Breger, L.S.: Spacecraft Formation Flying: Dynamics, Control and Navigation, vol. 23(3), pp. 385-390. Butterworth-Heinemann, Oxford (2009) · Zbl 1395.93011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.