×

Solitary wave formation from a generalized Rosenau equation. (English) Zbl 1400.35202

Summary: A generalized viscous Rosenau equation containing linear and nonlinear advective terms and mixed third- and fifth-order derivatives is studied numerically by means of an implicit second-order accurate method in time that treats the first-, second-, and fourth-order spatial derivatives as unknown and discretizes them by means of three-point, fourth-order accurate, compact finite differences. It is shown that the effect of the viscosity is to decrease the amplitude, curve the wave trajectory, and increase the number and width of the waves that emerge from an initial Gaussian condition, whereas the linear convective term pushes the wave front towards the downstream boundary. It is also shown that the effect of the nonlinear convective term is to increase the steepness of the leading wave front and the number of sawtooth waves that are generated behind it, while that of the first dispersive term is to increase the number of waves that break up from the initial condition as the coefficient that characterizes this term is decreased. It is also shown that, for reasons of stability, the second dispersion coefficient must be much smaller than the first one and its effects on wave propagation are relatively small.

MSC:

35Q51 Soliton equations
35C08 Soliton solutions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rosenau, P., A quasi-continuous description of a nonlinear transmission line, Physica Scripta, 34, 6B, 827-829, (1986) · doi:10.1088/0031-8949/34/6b/020
[2] Rosenau, P., Dynamics of dense discrete systems, Progress of Theoretical Physics, 79, 5, 1028-1042, (1988) · doi:10.1143/ptp.79.1028
[3] Barreto, R. K.; de Caldas, C. S. Q.; Gamboa, P.; Limaco, J., Existence of solutions to the Rosenau and Benjamin-Bona-Mahony equation in domains with moving boundary, Electronic Journal of Differential Equations, 2004, 1-12, (2004) · Zbl 1059.35114
[4] Park, M. A., On the Rosenau equation in multidimensional space, Nonlinear Analysis: Theory, Methods & Applications, 21, 1, 77-85, (1993) · Zbl 0811.35142 · doi:10.1016/0362-546x(93)90179-v
[5] Park, M. A., Pointwise decay estimates of solutions of the generalized Rosenau equation, Journal of the Korean Mathematical Society, 29, 2, 261-280, (1992) · Zbl 0808.35020
[6] Wang, S.; Xu, G., The Cauchy problem for the Rosenau equation, Nonlinear Analysis: Theory, Methods & Applications, 71, 1-2, 456-466, (2009) · Zbl 1171.35424 · doi:10.1016/j.na.2008.10.085
[7] Wang, H.; Wang, S., Decay and scattering of small solutions for Rosenau equations, Applied Mathematics and Computation, 218, 1, 115-123, (2011) · Zbl 1231.35252 · doi:10.1016/j.amc.2011.05.060
[8] Liu, L.; Mei, M., A better asymptotic profile of Rosenau-Burgers equation, Applied Mathematics and Computation, 131, 1, 147-170, (2002) · Zbl 1020.35097 · doi:10.1016/S0096-3003(01)00136-9
[9] Wang, H.; Wang, S., Global existence and asymptotic behavior of solution for the Rosenau equation with hydrodynamical damped term, Journal of Mathematical Analysis and Applications, 401, 2, 763-773, (2013) · Zbl 1307.35171 · doi:10.1016/j.jmaa.2012.12.069
[10] Kim, Y. D.; Lee, H. Y., The convergence of finite element Galerkin solution for the Rosenau equation, Korean Journal of Computational and Applied Mathematics, 5, 1, 171-180, (1998) · Zbl 0977.65080
[11] Esfahani, A., Solitary wave solutions for generalized Rosenau–KdV equation, Communications in Theoretical Physics, 55, 3, 396-398, (2011) · Zbl 1264.35192 · doi:10.1088/0253-6102/55/3/04
[12] Esfahani, A.; Pourgholi, R., Dynamics of solitary waves of the Rosenau-RLW equation, Differential Equations and Dynamical Systems, 22, 1, 93-111, (2014) · Zbl 1301.35104 · doi:10.1007/s12591-013-0174-6
[13] Razborova, P.; Ahmed, B.; Biswas, A., Solitons, shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity, Applied Mathematics & Information Sciences, 8, 2, 485-491, (2014) · doi:10.12785/amis/080205
[14] Razborova, P.; Moraru, L.; Biswas, A., Perturbation of dispersive shallow water waves with Rosenau-KdV-RLW equation and power law nonlinearity, Romanian Journal of Physics, 59, 7-8, 658-676, (2014)
[15] Choo, S. M.; Chung, S. K.; Kim, K. I., A discontinuous Galerkin method for the Rosenau equation, Applied Numerical Mathematics, 58, 6, 783-799, (2008) · Zbl 1145.65071 · doi:10.1016/j.apnum.2007.02.008
[16] Courant, R.; Friedrichs, K. O., Supersonic Flow and Shock Waves, (2012), New York, NY, USA: Springer, New York, NY, USA · Zbl 0041.11302
[17] Whitham, G. B., Linear and Nonlinear Waves, (1974), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0373.76001
[18] Rudenko, O. V.; Soluyan, S. I., Theoretical Foundations of Nonlinear Acoustics, (1977), New York, NY, USA: Springer Science+Business Media, New York, NY, USA
[19] Naugolnykh, K.; Ostrovsky, L., Nonlinear Wave Processes in Acoustics. Nonlinear Wave Processes in Acoustics, Cambridge Texts in Applied Mathematics, (1998), Cambridge University Press · Zbl 0908.76003
[20] Whitham, G. B., Non-linear dispersive waves, Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 283, 238-262, (1965) · Zbl 0125.44202
[21] Gurevich, A. V.; Krylov, A. L., Dissipationless shock waves in media with positive dispersion, Soviet Physics—JETP, 65, 944-953, (1987)
[22] Chung, S. K., Finite difference approximate solutions for the Rosenau equation, Applicable Analysis, 69, 1-2, 149-156, (1998) · Zbl 0904.65093 · doi:10.1080/00036819808840652
[23] Omrani, K.; Abidi, F.; Achouri, T.; Khiari, N., A new conservative finite difference scheme for the Rosenau equation, Applied Mathematics and Computation, 201, 1-2, 35-43, (2008) · Zbl 1156.65078 · doi:10.1016/j.amc.2007.11.039
[24] Chung, S. K.; Pani, A. K., Numerical methods for the Rosenau equation, Applicable Analysis, 77, 3-4, 351-369, (2001) · Zbl 1021.65048 · doi:10.1080/00036810108840914
[25] Hu, J.; Zheng, K., Two conservative difference schemes for the generalized Rosenau equation, Boundary Value Problems, 2010, (2010) · Zbl 1187.65090 · doi:10.1155/2010/543503
[26] Wang, M.; Li, D.; Cui, P., A conservative finite difference scheme for the generalized Rosenau equation, International Journal of Pure and Applied Mathematics, 71, 4, 539-549, (2011) · Zbl 1274.65243
[27] Ma, W.; Yang, A.; Wang, Y., A second-order accurate linearized difference scheme for the Rosenau-Burgers equation, Journal of Information and Computational Science, 7, 8, 1793-1800, (2010)
[28] Li, D.; Wang, Z.; Wu, Y.; Lu, Y., A finite difference simulation for Rosenau-Burgers equation, Proceedings of the International Conference on Information Engineering and Computer Science (ICIECS ’09), IEEE · doi:10.1109/iciecs.2009.5367154
[29] Hu, B.; Xu, Y.; Hu, J., Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation, Applied Mathematics and Computation, 204, 1, 311-316, (2008) · Zbl 1166.65041 · doi:10.1016/j.amc.2008.06.051
[30] Mittal, R. C.; Jain, R. K., Application of quintic B-splines collocation method on some Rosenau type nonlinear higher order evolution equations, International Journal of Nonlinear Science, 13, 2, 142-152, (2012) · Zbl 1261.65105
[31] Pan, X.; Zhang, L., A new finite difference scheme for the Rosenau-Burgers equation, Applied Mathematics and Computation, 218, 17, 8917-8924, (2012) · Zbl 1245.65111 · doi:10.1016/j.amc.2012.02.051
[32] Xue, G.-Y.; Zhang, L., A new finite difference scheme for generalized Rosenau-Burgers equation, Applied Mathematics and Computation, 222, 490-496, (2013) · Zbl 1329.65192 · doi:10.1016/j.amc.2013.07.052
[33] Hu, J.; Hu, B.; Xu, Y., Average implicit linear difference scheme for generalized Rosenau-Burgers equation, Applied Mathematics and Computation, 217, 19, 7557-7563, (2011) · Zbl 1226.65076 · doi:10.1016/j.amc.2011.02.016
[34] Hu, J.; Xu, Y.; Hu, B., Conservative linear difference scheme for Rosenau-KdV equation, Advances in Mathematical Physics, 2013, (2013) · Zbl 1282.35332 · doi:10.1155/2013/423718
[35] Manickam, S. A. V.; Pani, A. K.; Chung, S. K., A second-order splitting combined with orthogonal cubic spline collocation method for the Rosenau equation, Numerical Methods for Partial Differential Equations, 14, 6, 695-716, (1998) · Zbl 0930.65111 · doi:10.1002/(sici)1098-2426(199811)14:6lt;695::aid-num1gt;3.3.co;2-f
[36] Wongsaijai, B.; Poochinapan, K., A three-level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation, Applied Mathematics and Computation, 245, 289-304, (2014) · Zbl 1336.65143 · doi:10.1016/j.amc.2014.07.075
[37] Luo, Y.; Xu, Y.; Feng, M., Conservative difference scheme for generalized Rosenau-KdV equation, Advances in Mathematical Physics, 2014, (2014) · Zbl 1291.76231 · doi:10.1155/2014/986098
[38] Chung, S. K.; Ha, S. N., Finite element Galerkin solutions for the Rosenau equation, Applicable Analysis, 54, 1-2, 39-56, (1994) · Zbl 0830.65097 · doi:10.1080/00036819408840267
[39] Zuo, J.-M.; Zhang, Y.-M.; Zhang, T.-D.; Chang, F., A new conservative difference scheme for the general Rosenau-RLW equation, Boundary Value Problems, 2010, (2010) · Zbl 1206.65216 · doi:10.1155/2010/516260
[40] Pan, X.; Zhang, L., Numerical simulation for general Rosenau–RLW equation: an average linearized conservative scheme, Mathematical Problems in Engineering, 2012, (2012) · Zbl 1264.65140 · doi:10.1155/2012/517818
[41] Atouani, N.; Omrani, K., Galerkin finite element method for the Rosenau-RLW equation, Computers & Mathematics with Applications, 66, 3, 289-303, (2013) · Zbl 1347.65148 · doi:10.1016/j.camwa.2013.04.029
[42] Pan, X.; Zheng, K.; Zhang, L., Finite difference discretization of the Rosenau-RLW equation, Applicable Analysis, 92, 12, 2578-2589, (2013) · Zbl 1290.65079 · doi:10.1080/00036811.2012.750296
[43] Pan, X.; Zhang, L., On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation, Applied Mathematical Modelling, 36, 8, 3371-3378, (2012) · Zbl 1252.65144 · doi:10.1016/j.apm.2011.08.022
[44] Mittal, R. C.; Jain, R. K., Numerical solution of general Rosenau-RLW equation using quintic B-splines collocation method, Communications in Numerical Analysis, 2012, (2012) · doi:10.5899/2012/cna-00129
[45] Ramos, J. I., Explicit finite difference methods for the EW and RLW equations, Applied Mathematics and Computation, 179, 2, 622-638, (2006) · Zbl 1102.65092 · doi:10.1016/j.amc.2005.12.003
[46] Ramos, J. I., Solitary wave interactions of the GRLW equation, Chaos, Solitons & Fractals, 33, 2, 479-491, (2007) · doi:10.1016/j.chaos.2006.01.016
[47] García-López, C. M.; Ramos, J. I., Effects of convection on a modified GRLW equation, Applied Mathematics and Computation, 219, 8, 4118-4132, (2012) · Zbl 1311.65107 · doi:10.1016/j.amc.2012.10.066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.