×

Living with ghosts in Hořava-Lifshitz gravity. (English) Zbl 1388.83604

Summary: We consider the branch of the projectable Hořava-Lifshitz model which exhibits ghost instabilities in the low energy limit. It turns out that, due to the Lorentz violating structure of the model and to the presence of a finite strong coupling scale, the vacuum decay rate into photons is tiny in a wide range of phenomenologically acceptable parameters. The strong coupling scale, understood as a cutoff on ghosts’ spatial momenta, can be raised up to \(\Lambda\) 10 TeV. At lower momenta, the projectable Hořava-Lifshitz gravity is equivalent to General Relativity supplemented by a fluid with a small positive sound speed squared \((10^{-42} c_s^{2} 10^{-20}\), that could be a promising candidate for the Dark Matter. Despite these advantages, the unavoidable presence of the strong coupling obscures the implementation of the original Hořava’s proposal on quantum gravity. Apart from the Hořava-Lifshitz model, conclusions of the present work hold also for the mimetic matter scenario, where the analogue of the projectability condition is achieved by a non-invertible conformal transformation of the metric.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
[2] M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond.A 173 (1939) 211 [INSPIRE]. · JFM 65.1532.01 · doi:10.1098/rspa.1939.0140
[3] D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev.D 6 (1972) 3368 [INSPIRE].
[4] A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett.B 39 (1972) 393 [INSPIRE]. · doi:10.1016/0370-2693(72)90147-5
[5] K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys.84 (2012) 671 [arXiv:1105.3735] [INSPIRE]. · doi:10.1103/RevModPhys.84.671
[6] C. de Rham, Massive Gravity, Living Rev. Rel.17 (2014) 7 [arXiv:1401.4173] [INSPIRE]. · Zbl 1320.83018
[7] V.A. Rubakov and P.G. Tinyakov, Infrared-modified gravities and massive gravitons, Phys. Usp.51 (2008) 759 [arXiv:0802.4379] [INSPIRE]. · doi:10.1070/PU2008v051n08ABEH006600
[8] D. Comelli, F. Nesti and L. Pilo, Nonderivative Modified Gravity: a Classification, JCAP11 (2014) 018 [arXiv:1407.4991] [INSPIRE]. · Zbl 1342.83271 · doi:10.1088/1475-7516/2014/11/018
[9] D. Comelli, F. Nesti and L. Pilo, Massive gravity: a General Analysis, JHEP07 (2013) 161 [arXiv:1305.0236] [INSPIRE]. · Zbl 1342.83271 · doi:10.1007/JHEP07(2013)161
[10] D. Comelli, F. Nesti and L. Pilo, Cosmology in General Massive Gravity Theories, JCAP05 (2014) 036 [arXiv:1307.8329] [INSPIRE]. · Zbl 1342.83271 · doi:10.1088/1475-7516/2014/05/036
[11] V.A. Rubakov, Lorentz-violating graviton masses: Getting around ghosts, low strong coupling scale and VDVZ discontinuity, hep-th/0407104 [INSPIRE].
[12] J.M. Cline, S. Jeon and G.D. Moore, The Phantom menaced: Constraints on low-energy effective ghosts, Phys. Rev.D 70 (2004) 043543 [hep-ph/0311312] [INSPIRE].
[13] S.L. Dubovsky, Phases of massive gravity, JHEP10 (2004) 076 [hep-th/0409124] [INSPIRE]. · doi:10.1088/1126-6708/2004/10/076
[14] N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity, JHEP05 (2004) 074 [hep-th/0312099] [INSPIRE]. · doi:10.1088/1126-6708/2004/05/074
[15] N. Arkani-Hamed, P. Creminelli, S. Mukohyama and M. Zaldarriaga, Ghost inflation, JCAP04 (2004) 001 [hep-th/0312100] [INSPIRE]. · doi:10.1088/1475-7516/2004/04/001
[16] N. Arkani-Hamed, H.-C. Cheng, M.A. Luty, S. Mukohyama and T. Wiseman, Dynamics of gravity in a Higgs phase, JHEP01 (2007) 036 [hep-ph/0507120] [INSPIRE]. · doi:10.1088/1126-6708/2007/01/036
[17] P. Hořava, Quantum Gravity at a Lifshitz Point, Phys. Rev.D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].
[18] P. Hořava, Membranes at Quantum Criticality, JHEP03 (2009) 020 [arXiv:0812.4287] [INSPIRE].
[19] P. Hořava, Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point, Phys. Rev. Lett.102 (2009) 161301 [arXiv:0902.3657] [INSPIRE]. · doi:10.1103/PhysRevLett.102.161301
[20] C. Charmousis, G. Niz, A. Padilla and P.M. Saffin, Strong coupling in Hořava gravity, JHEP08 (2009) 070 [arXiv:0905.2579] [INSPIRE]. · doi:10.1088/1126-6708/2009/08/070
[21] D. Blas, O. Pujolàs and S. Sibiryakov, On the Extra Mode and Inconsistency of Hořava Gravity, JHEP10 (2009) 029 [arXiv:0906.3046] [INSPIRE]. · doi:10.1088/1126-6708/2009/10/029
[22] D. Blas, O. Pujolàs and S. Sibiryakov, Consistent Extension of Hořava Gravity, Phys. Rev. Lett.104 (2010) 181302 [arXiv:0909.3525] [INSPIRE]. · doi:10.1103/PhysRevLett.104.181302
[23] D. Blas, O. Pujolàs and S. Sibiryakov, Models of non-relativistic quantum gravity: The Good, the bad and the healthy, JHEP04 (2011) 018 [arXiv:1007.3503] [INSPIRE]. · Zbl 1250.83031 · doi:10.1007/JHEP04(2011)018
[24] C. Germani, A. Kehagias and K. Sfetsos, Relativistic Quantum Gravity at a Lifshitz Point, JHEP09 (2009) 060 [arXiv:0906.1201] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/060
[25] K. Koyama and F. Arroja, Pathological behaviour of the scalar graviton in Hořava-Lifshitz gravity, JHEP03 (2010) 061 [arXiv:0910.1998] [INSPIRE]. · Zbl 1271.83033 · doi:10.1007/JHEP03(2010)061
[26] A.O. Barvinsky, D. Blas, M. Herrero-Valea, S.M. Sibiryakov and C.F. Steinwachs, Renormalization of Hořava gravity, Phys. Rev.D 93 (2016) 064022 [arXiv:1512.02250] [INSPIRE].
[27] S. Mukohyama, Dark matter as integration constant in Hořava-Lifshitz gravity, Phys. Rev.D 80 (2009) 064005 [arXiv:0905.3563] [INSPIRE].
[28] S. Mukohyama, K. Nakayama, F. Takahashi and S. Yokoyama, Phenomenological Aspects of Hořava-Lifshitz Cosmology, Phys. Lett.B 679 (2009) 6 [arXiv:0905.0055] [INSPIRE]. · doi:10.1016/j.physletb.2009.07.005
[29] S. Mukohyama, Hořava-Lifshitz Cosmology: A Review, Class. Quant. Grav.27 (2010) 223101 [arXiv:1007.5199] [INSPIRE]. · Zbl 1204.83005 · doi:10.1088/0264-9381/27/22/223101
[30] S. Mukohyama, Scale-invariant cosmological perturbations from Hořava-Lifshitz gravity without inflation, JCAP06 (2009) 001 [arXiv:0904.2190] [INSPIRE]. · doi:10.1088/1475-7516/2009/06/001
[31] S. Mukohyama, Caustic avoidance in Hořava-Lifshitz gravity, JCAP09 (2009) 005 [arXiv:0906.5069] [INSPIRE]. · doi:10.1088/1475-7516/2009/09/005
[32] J. Garriga and A. Vilenkin, Living with ghosts in Lorentz invariant theories, JCAP01 (2013) 036 [arXiv:1202.1239] [INSPIRE]. · doi:10.1088/1475-7516/2013/01/036
[33] D.E. Kaplan and R. Sundrum, A Symmetry for the cosmological constant, JHEP07 (2006) 042 [hep-th/0505265] [INSPIRE]. · doi:10.1088/1126-6708/2006/07/042
[34] S. Dyda, E.E. Flanagan and M. Kamionkowski, Vacuum Instability in Chern-Simons Gravity, Phys. Rev.D 86 (2012) 124031 [arXiv:1208.4871] [INSPIRE].
[35] D. Blas, O. Pujolàs and S. Sibiryakov, Comment on ‘Strong coupling in extended Hořava-Lifshitz gravity’, Phys. Lett.B 688 (2010) 350 [arXiv:0912.0550] [INSPIRE]. · doi:10.1016/j.physletb.2010.03.073
[36] A.H. Chamseddine and V. Mukhanov, Mimetic Dark Matter, JHEP11 (2013) 135 [arXiv:1308.5410] [INSPIRE]. · doi:10.1007/JHEP11(2013)135
[37] A.H. Chamseddine, V. Mukhanov and A. Vikman, Cosmology with Mimetic Matter, JCAP06 (2014) 017 [arXiv:1403.3961] [INSPIRE]. · doi:10.1088/1475-7516/2014/06/017
[38] F. Capela and S. Ramazanov, Modified Dust and the Small Scale Crisis in CDM, JCAP04 (2015) 051 [arXiv:1412.2051] [INSPIRE]. · doi:10.1088/1475-7516/2015/04/051
[39] L. Mirzagholi and A. Vikman, Imperfect Dark Matter, JCAP06 (2015) 028 [arXiv:1412.7136] [INSPIRE]. · doi:10.1088/1475-7516/2015/06/028
[40] D.H. Weinberg, J.S. Bullock, F. Governato, R.K. de Naray and A.H.G. Peter, Cold dark matter: controversies on small scales, arXiv:1306.0913 [INSPIRE].
[41] N. Deruelle and J. Rua, Disformal Transformations, Veiled General Relativity and Mimetic Gravity, JCAP09 (2014) 002 [arXiv:1407.0825] [INSPIRE]. · doi:10.1088/1475-7516/2014/09/002
[42] T. Jacobson and D. Mattingly, Gravity with a dynamical preferred frame, Phys. Rev.D 64 (2001) 024028 [gr-qc/0007031] [INSPIRE]. · Zbl 1104.83307
[43] T. Jacobson and A.J. Speranza, Comment on “Scalar Einstein-Aether theory”, arXiv:1405.6351 [INSPIRE].
[44] Z. Haghani, T. Harko, H.R. Sepangi and S. Shahidi, The scalar Einstein-aether theory, arXiv:1404.7689 [INSPIRE].
[45] A.O. Barvinsky, Dark matter as a ghost free conformal extension of Einstein theory, JCAP01 (2014) 014 [arXiv:1311.3111] [INSPIRE]. · doi:10.1088/1475-7516/2014/01/014
[46] R.L. Arnowitt, S. Deser and C.W. Misner, The Dynamics of general relativity, Gen. Rel. Grav.40 (2008) 1997 [gr-qc/0405109] [INSPIRE]. · Zbl 1152.83320 · doi:10.1007/s10714-008-0661-1
[47] T.P. Sotiriou, M. Visser and S. Weinfurtner, Phenomenologically viable Lorentz-violating quantum gravity, Phys. Rev. Lett.102 (2009) 251601 [arXiv:0904.4464] [INSPIRE]. · doi:10.1103/PhysRevLett.102.251601
[48] T.P. Sotiriou, M. Visser and S. Weinfurtner, Quantum gravity without Lorentz invariance, JHEP10 (2009) 033 [arXiv:0905.2798] [INSPIRE]. · doi:10.1088/1126-6708/2009/10/033
[49] I. Kimpton and A. Padilla, Lessons from the decoupling limit of Hořava gravity, JHEP07 (2010) 014 [arXiv:1003.5666] [INSPIRE]. · Zbl 1290.83021 · doi:10.1007/JHEP07(2010)014
[50] A. Golovnev, On the recently proposed Mimetic Dark Matter, Phys. Lett.B 728 (2014) 39 [arXiv:1310.2790] [INSPIRE]. · Zbl 1377.83154 · doi:10.1016/j.physletb.2013.11.026
[51] K. Hammer and A. Vikman, Many Faces of Mimetic Gravity, arXiv:1512.09118 [INSPIRE].
[52] F. Arroja, N. Bartolo, P. Karmakar and S. Matarrese, The two faces of mimetic Horndeski gravity: disformal transformations and Lagrange multiplier, JCAP09 (2015) 051 [arXiv:1506.08575] [INSPIRE]. · doi:10.1088/1475-7516/2015/09/051
[53] F. Arroja, N. Bartolo, P. Karmakar and S. Matarrese, Cosmological perturbations in mimetic Horndeski gravity, JCAP04 (2016) 042 [arXiv:1512.09374] [INSPIRE]. · doi:10.1088/1475-7516/2016/04/042
[54] E.A. Lim, I. Sawicki and A. Vikman, Dust of Dark Energy, JCAP05 (2010) 012 [arXiv:1003.5751] [INSPIRE]. · doi:10.1088/1475-7516/2010/05/012
[55] L. Blanchet and S. Marsat, Modified gravity approach based on a preferred time foliation, Phys. Rev.D 84 (2011) 044056 [arXiv:1107.5264] [INSPIRE].
[56] M. Bonetti and E. Barausse, Post-Newtonian constraints on Lorentz-violating gravity theories with a MOND phenomenology, Phys. Rev.D 91 (2015) 084053 [Erratum ibid.D 93 (2016) 029901] [arXiv:1502.05554] [INSPIRE].
[57] T.-j. Chen, M. Fasiello, E.A. Lim and A.J. Tolley, Higher derivative theories with constraints: Exorcising Ostrogradski’s Ghost, JCAP02 (2013) 042 [arXiv:1209.0583] [INSPIRE]. · doi:10.1088/1475-7516/2013/02/042
[58] R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys.720 (2007) 403 [astro-ph/0601672] [INSPIRE]. · doi:10.1007/978-3-540-71013-4_14
[59] R.P. Woodard, Ostrogradsky’s theorem on Hamiltonian instability, Scholarpedia10 (2015) 32243 [arXiv:1506.02210] [INSPIRE]. · doi:10.4249/scholarpedia.32243
[60] V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept.215 (1992) 203 [INSPIRE]. · doi:10.1016/0370-1573(92)90044-Z
[61] D.S. Gorbunov and V.A. Rubakov, Introduction to the theory of the early universe: Cosmological perturbations and inflationary theory, World Scientific, Hackensack U.S.A. (2011) [INSPIRE]. · Zbl 1246.83007 · doi:10.1142/7873
[62] L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Pergamon Press (1975). · Zbl 0043.19803
[63] J.M. Pons, Substituting fields within the action: Consistency issues and some applications, J. Math. Phys.51 (2010) 122903 [arXiv:0909.4151] [INSPIRE]. · Zbl 1314.70020 · doi:10.1063/1.3525242
[64] M. Colombo, A.E. Gumrukcuoglu and T.P. Sotiriou, Hořava gravity with mixed derivative terms, Phys. Rev.D 91 (2015) 044021 [arXiv:1410.6360] [INSPIRE].
[65] M. Colombo, A.E. Gümrükçüoǧlu and T.P. Sotiriou, Hořava gravity with mixed derivative terms: Power counting renormalizability with lower order dispersions, Phys. Rev.D 92 (2015) 064037 [arXiv:1503.07544] [INSPIRE].
[66] A. Coates, M. Colombo, A.E. Gumrukcuoglu and T.P. Sotiriou, The uninvited guest in mixed derivative Hořava Gravity, arXiv:1604.04215 [INSPIRE].
[67] M. Pospelov and Y. Shang, On Lorentz violation in Hořava-Lifshitz type theories, Phys. Rev.D 85 (2012) 105001 [arXiv:1010.5249] [INSPIRE].
[68] B. Audren, D. Blas, M.M. Ivanov, J. Lesgourgues and S. Sibiryakov, Cosmological constraints on deviations from Lorentz invariance in gravity and dark matter, JCAP03 (2015) 016 [arXiv:1410.6514] [INSPIRE]. · doi:10.1088/1475-7516/2015/03/016
[69] D. Blas, M.M. Ivanov and S. Sibiryakov, Testing Lorentz invariance of dark matter, JCAP10 (2012) 057 [arXiv:1209.0464] [INSPIRE]. · doi:10.1088/1475-7516/2012/10/057
[70] T. Jacobson, S. Liberati and D. Mattingly, Lorentz violation at high energy: Concepts, phenomena and astrophysical constraints, Annals Phys.321 (2006) 150 [astro-ph/0505267] [INSPIRE]. · Zbl 1086.85001 · doi:10.1016/j.aop.2005.06.004
[71] V.A. Kostelecky and N. Russell, Data Tables for Lorentz and CPT Violation, Rev. Mod. Phys.83 (2011) 11 [arXiv:0801.0287] [INSPIRE]. · doi:10.1103/RevModPhys.83.11
[72] D. Blas and E. Lim, Phenomenology of theories of gravity without Lorentz invariance: the preferred frame case, Int. J. Mod. Phys.D 23 (2015) 1443009 [arXiv:1412.4828] [INSPIRE]. · Zbl 1317.83066
[73] S. Liberati, L. Maccione and T.P. Sotiriou, Scale hierarchy in Hořava-Lifshitz gravity: a strong constraint from synchrotron radiation in the Crab nebula, Phys. Rev. Lett.109 (2012) 151602 [arXiv:1207.0670] [INSPIRE]. · doi:10.1103/PhysRevLett.109.151602
[74] F. Sbisà, Classical and quantum ghosts, Eur. J. Phys.36 (2015) 015009 [arXiv:1406.4550] [INSPIRE]. · doi:10.1088/0143-0807/36/1/015009
[75] R.C. Hickox and M. Markevitch, Absolute measurement of the unresolved cosmic X-ray background in the 0.5-8 keV band with Chandra, Astrophys. J.645 (2006) 95 [astro-ph/0512542] [INSPIRE]. · doi:10.1086/504070
[76] M. Turler, M. Chernyakova, T.J.L. Courvoisier, P. Lubinski, A. Neronov, N. Produit et al., INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission, Astron. Astrophys.512 (2010) A49 [arXiv:1001.2110] [INSPIRE]. · doi:10.1051/0004-6361/200913072
[77] EGRET collaboration, P. Sreekumar et al., EGRET observations of the extragalactic gamma-ray emission, Astrophys. J.494 (1998) 523 [astro-ph/9709257] [INSPIRE].
[78] S.M. Carroll, M. Hoffman and M. Trodden, Can the dark energy equation - of - state parameter w be less than -1?, Phys. Rev.D 68 (2003) 023509 [astro-ph/0301273] [INSPIRE].
[79] A.A. Klypin, A.V. Kravtsov, O. Valenzuela and F. Prada, Where are the missing Galactic satellites?, Astrophys. J.522 (1999) 82 [astro-ph/9901240] [INSPIRE]. · doi:10.1086/307643
[80] B. Moore, S. Ghigna, F. Governato, G. Lake, T.R. Quinn, J. Stadel et al., Dark matter substructure within galactic halos, Astrophys. J.524 (1999) L19 [astro-ph/9907411] [INSPIRE]. · doi:10.1086/312287
[81] T. Sawala et al., Local Group galaxies emerge from the dark, arXiv:1412.2748 [INSPIRE].
[82] G.N. Felder, L. Kofman and A. Starobinsky, Caustics in tachyon matter and other Born-Infeld scalars, JHEP09 (2002) 026 [hep-th/0208019] [INSPIRE]. · doi:10.1088/1126-6708/2002/09/026
[83] E. Babichev, Formation of caustics in k-essence and Horndeski theory, JHEP04 (2016) 129 [arXiv:1602.00735] [INSPIRE]. · Zbl 1388.83005 · doi:10.1007/JHEP04(2016)129
[84] S. Ramazanov, Initial Conditions for Imperfect Dark Matter, JCAP12 (2015) 007 [arXiv:1507.00291] [INSPIRE]. · doi:10.1088/1475-7516/2015/12/007
[85] J. Chluba and R.A. Sunyaev, The evolution of CMB spectral distortions in the early Universe, Mon. Not. Roy. Astron. Soc.419 (2012) 1294 [arXiv:1109.6552] [INSPIRE]. · doi:10.1111/j.1365-2966.2011.19786.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.