×

Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation. (English) Zbl 1383.76260

Summary: We study the partition of energy between waves and vortices in stratified turbulence, with or without rotation, for a variety of parameters, focusing on the behaviour of the waves and vortices in the inverse cascade of energy towards the large scales. To this end, we use direct numerical simulations in a cubic box at a Reynolds number \(Re\approx 1000\), with the ratio between the Brunt-Väisälä frequency \(N\) and the inertial frequency \(f\) varying from \(1/4\) to 20, together with a purely stratified run. The Froude number, measuring the strength of the stratification, varies within the range \(0.02\leqslant Fr\leqslant 0.32\). We find that the inverse cascade is dominated by the slow quasi-geostrophic modes. Their energy spectra and fluxes exhibit characteristics of an inverse cascade, even though their energy is not conserved. Surprisingly, the slow vortices still dominate when the ratio \(N/f\) increases, also in the stratified case, although less and less so. However, when \(N/f\) increases, the inverse cascade of the slow modes becomes weaker and weaker, and it vanishes in the purely stratified case. We discuss how the disappearance of the inverse cascade of energy with increasing \(N/f\) can be interpreted in terms of the waves and vortices, and identify the main effects that can explain this transition based on both inviscid invariants arguments and viscous effects due to vertical shear.

MSC:

76F45 Stratification effects in turbulence
76D05 Navier-Stokes equations for incompressible viscous fluids
76U05 General theory of rotating fluids
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aluie, H.; Kurien, S., Joint downscale fluxes of energy and potential enstrophy in rotating stratified Boussinesq flows, Europhys. Lett., 96, 4, 44006, (2011) · doi:10.1209/0295-5075/96/44006
[2] Babin, A.; Mahalov, A.; Nicolaenko, B.; Zhou, Y., On the asymptotic regimes and the strongly stratified limit of rotating Boussinesq equations, Theor. Comput. Fluid Dyn., 9, 223-251, (1997) · Zbl 0912.76092 · doi:10.1007/s001620050042
[3] Baer, F.; Tribbia, J. J., On complete filtering of gravity modes through nonlinear initialization, Mon. Weath. Rev., 105, 1536-1539, (1977) · doi:10.1175/1520-0493(1977)105<1536:OCFOGM>2.0.CO;2
[4] Bartello, P., Geostrophic adjustment and inverse cascades in rotating stratified turbulence, J. Atmos. Sci., 52, 4410-4428, (1995) · doi:10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2
[5] Bartello, P.; Tobias, S. M., Sensitivity of stratified turbulence to the buoyancy Reynolds number, J. Fluid Mech., 725, 1-22, (2013) · Zbl 1287.76142 · doi:10.1017/jfm.2013.170
[6] Biferale, L.; Musacchio, S.; Toschi, F., Inverse energy cascade in three-dimensional isotropic turbulence, Phys. Rev. Lett., 108, 16, (2012) · Zbl 1291.76156
[7] Billant, P.; Chomaz, J.-M., Self-similarity of strongly stratified inviscid flows, Phys. Fluids, 13, 6, 1645-1651, (2001) · Zbl 1184.76060 · doi:10.1063/1.1369125
[8] Boffetta, G.; Ecke, R. E., Two-dimensional turbulence, Annu. Rev. Fluid Mech., 44, 427-451, (2012) · Zbl 1350.76022 · doi:10.1146/annurev-fluid-120710-101240
[9] Brethouwer, G.; Billant, P.; Lindborg, E.; Chomaz, J. M., Scaling analysis and simulation of strongly stratified turbulent flows, J. Fluid Mech., 585, 343-368, (2007) · Zbl 1168.76327 · doi:10.1017/S0022112007006854
[10] Brunner-Suzuki, A.-M. E. G.; Sundermeyer, M. A.; Lelong, M. P., Upscale energy transfer by the vortical mode and internal waves, J. Phys. Oceanogr., 44, 2446-2469, (2014) · doi:10.1175/JPO-D-12-0149.1
[11] Bühler, O.; Callies, J.; Ferrari, R., Wave – vortex decomposition of one-dimensional ship-track data, J. Fluid Mech., 756, 1007-1026, (2014) · Zbl 1327.86004 · doi:10.1017/jfm.2014.488
[12] Callies, J.; Ferrari, R.; Bühler, O., Transition from geostrophic turbulence to inertia – gravity waves in the atmospheric energy spectrum, Proc. Natl Acad. Sci. USA, 111, 48, 17033-17038, (2014) · doi:10.1073/pnas.1410772111
[13] Campagne, A.; Gallet, B.; Moisy, F.; Cortet, P.-P., Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment, Phys. Rev. E, 91, 4, (2015)
[14] Celani, A.; Musacchio, S.; Vincenzi, D., Turbulence in more than two and less than three dimensions, Phys. Rev. Lett., 104, 18, (2010) · doi:10.1103/PhysRevLett.104.184506
[15] Charney, J. G., Geostrophic turbulence, J. Atmos. Sci., 28, 1087-1094, (1971) · doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
[16] Deusebio, E.; Boffetta, G.; Lindborg, E.; Musacchio, S., Dimensional transition in rotating turbulence, Phys. Rev. E, 90, (2014)
[17] Dewan, E. M., Stratospheric wave spectra resembling turbulence, Science, 204, 832-835, (1979) · doi:10.1126/science.204.4395.832
[18] Embid, P. F.; Majda, A. J., Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers, Geophys. Astrophys. Fluid Dyn., 87, 1-2, 1-50, (1998) · doi:10.1080/03091929808208993
[19] Errico, R. M., The statistical equilibrium solution of a primitive-equation model, Tellus A, 36, 1, 42-51, (1984) · doi:10.1111/j.1600-0870.1984.tb00221.x
[20] Farrell, B. F.; Ioannou, P. J., A theory of baroclinic turbulence, J. Atmos. Sci., 66, 2444-2454, (2009) · doi:10.1175/2009JAS2989.1
[21] Farrell, B. F.; Ioannou, P. J., Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow, J. Fluid Mech., 708, 149-196, (2012) · Zbl 1275.76125 · doi:10.1017/jfm.2012.300
[22] Ferrari, R.; Wunsch, C., Ocean circulation kinetic energy: reservoirs, sources, and sinks, Annu. Rev. Fluid Mech., 41, 1, 253-282, (2009) · Zbl 1159.76050 · doi:10.1146/annurev.fluid.40.111406.102139
[23] Gage, K. S., Evidence for k-5/3 law inertial range in mesoscale two-dimensional turbulence, J. Atmos. Sci., 36, 1950-1954, (1979) · doi:10.1175/1520-0469(1979)036<1950:EFALIR>2.0.CO;2
[24] Garrett, C.; Munk, W. H., Internal waves in the ocean, Annu. Rev. Fluid Mech., 11, 1, 339-369, (1979) · Zbl 0427.76015 · doi:10.1146/annurev.fl.11.010179.002011
[25] Godeferd, F. S.; Cambon, C., Detailed investigation of energy transfers in homogeneous stratified turbulence, Phys. Fluids, 6, 6, 2084-2100, (1994) · Zbl 0830.76039 · doi:10.1063/1.868214
[26] Godeferd, F. S.; Staquet, C., Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 2. Large-scale and small-scale anisotropy, J. Fluid Mech., 486, 115-159, (2003) · Zbl 1085.76026 · doi:10.1017/S0022112003004531
[27] Godoy-Diana, R.; Chomaz, J.-M.; Billant, P., Vertical length scale selection for pancake vortices in strongly stratified viscous fluids, J. Fluid Mech., 504, 229-238, (2004) · Zbl 1116.76304 · doi:10.1017/S0022112004008067
[28] Hasselmann, K., Feynman diagrams and interaction rules of wave – wave scattering processes, Rev. Geophys., 4, 1, 1-32, (1966) · doi:10.1029/RG004i001p00001
[29] Herbert, C., Restricted partition functions and inverse energy cascades in parity symmetry breaking flows, Phys. Rev. E, 89, (2014)
[30] Herbert, C.; Pouquet, A.; Marino, R., Restricted equilibrium and the energy cascade in rotating and stratified flows, J. Fluid Mech., 758, 374-406, (2014) · Zbl 1327.76160 · doi:10.1017/jfm.2014.540
[31] Herring, J. R.; Métais, O., Numerical experiments in forced stably stratified turbulence, J. Fluid Mech., 202, 1, 97-115, (1989) · doi:10.1017/S0022112089001114
[32] Ivey, G. N.; Winters, K. B.; Koseff, J. R., Density stratification, turbulence, but how much mixing?, Annu. Rev. Fluid Mech., 40, 1, 169-184, (2008) · Zbl 1136.76026 · doi:10.1146/annurev.fluid.39.050905.110314
[33] Kartashova, E.; Nazarenko, S.; Rudenko, O., Resonant interactions of nonlinear water waves in a finite basin, Phys. Rev. E, 78, (2008)
[34] Kimura, Y.; Herring, J. R., Energy spectra of stably stratified turbulence, J. Fluid Mech., 698, 19-50, (2012) · Zbl 1250.76117 · doi:10.1017/jfm.2011.546
[35] Kitamura, Y.; Matsuda, Y., Energy cascade processes in rotating stratified turbulence with application to the atmospheric mesoscale, J. Geophys. Res., 115, D11104, (2010) · doi:10.1029/2009JD012368
[36] Kraichnan, R. H., Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10, 1417-1423, (1967) · doi:10.1063/1.1762301
[37] Kraichnan, R. H.; Montgomery, D. C., Two-dimensional turbulence, Rep. Prog. Phys., 43, 547, (1980) · doi:10.1088/0034-4885/43/5/001
[38] Kurien, S.; Smith, L. M., Asymptotics of unit Burger number rotating and stratified flows for small aspect ratio, Physica D, 241, 3, 149-163, (2012) · Zbl 1426.76640
[39] Kurien, S.; Smith, L. M., Effect of rotation and domain aspect-ratio on layer formation in strongly stratified Boussinesq flows, J. Turbul., 15, 4, 241-271, (2014) · doi:10.1080/14685248.2014.895832
[40] Laval, J.-P.; Mcwilliams, J. C.; Dubrulle, B., Forced stratified turbulence: successive transitions with Reynolds number, Phys. Rev. E, 68, 3, (2003) · Zbl 1186.76310
[41] Lee, T. D., On some statistical properties of hydrodynamical and magneto-hydrodynamical fields, Q. Appl. Maths, 10, 69-74, (1952) · Zbl 0047.19601
[42] Leith, C. E., Nonlinear normal mode initialization and quasi-geostrophic theory, J. Atmos. Sci., 37, 958-968, (1980) · doi:10.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO;2
[43] Clark Di Leoni, P.; Mininni, P. D., Absorption of waves by large-scale winds in stratified turbulence, Phys. Rev. E, 91, 3, (2015)
[44] Lien, R.-C.; Müller, P., Consistency relations for gravity and vortical modes in the ocean, Deep-Sea Res., 39, 9, 1595-1612, (1992) · doi:10.1016/0198-0149(92)90050-4
[45] Lilly, D. K., Stratified turbulence and the mesoscale variability of the atmosphere, J. Atmos. Sci., 40, 749-761, (1983) · doi:10.1175/1520-0469(1983)040<0749:STATMV>2.0.CO;2
[46] Lilly, D. K.; Bassett, G.; Droegemeier, K.; Bartello, P., Stratified turbulence in the atmospheric mesoscales, Theor. Comput. Fluid Dyn., 11, 3-4, 139-153, (1998) · Zbl 0928.76050 · doi:10.1007/s001620050085
[47] Lindborg, E., The effect of rotation on the mesoscale energy cascade in the free atmosphere, Geophys. Res. Lett., 32, 1, L01809, (2005) · doi:10.1029/2004GL021319
[48] Lindborg, E., The energy cascade in a strongly stratified fluid, J. Fluid Mech., 550, 207-242, (2006) · Zbl 1097.76039 · doi:10.1017/S0022112005008128
[49] Lindborg, E., A Helmholtz decomposition of structure functions and spectra calculated from aircraft data, J. Fluid Mech., 762, (2015) · doi:10.1017/jfm.2014.685
[50] Longuet-Higgins, M. S.; Gill, A. E.; Kenyon, K., Resonant interactions between planetary waves, Proc. R. Soc. Lond. A, 299, 120-144, (1967) · doi:10.1098/rspa.1967.0126
[51] Marino, R.; Mininni, P. D.; Rosenberg, D.; Pouquet, A., Inverse cascades in rotating stratified turbulence: fast growth of large scales, Europhys. Lett., 102, 44006, (2013) · doi:10.1209/0295-5075/102/44006
[52] Marino, R.; Mininni, P. D.; Rosenberg, D. L.; Pouquet, A., Large-scale anisotropy in stably stratified rotating flows, Phys. Rev. E, 90, 2, (2014)
[53] Marino, R.; Pouquet, A.; Rosenberg, D., Resolving the paradox of oceanic large-scale balance and small-scale mixing, Phys. Rev. Lett., 114, (2015) · doi:10.1103/PhysRevLett.114.114504
[54] Mckeon, B. J.; Sharma, A. S., A critical-layer framework for turbulent pipe flow, J. Fluid Mech., 658, 336-382, (2010) · Zbl 1205.76138 · doi:10.1017/S002211201000176X
[55] Métais, O.; Bartello, P.; Garnier, E.; Riley, J. J.; Lesieur, M., Inverse cascade in stably stratified rotating turbulence, Dyn. Atmos. Oceans, 23, 1, 193-203, (1996) · doi:10.1016/0377-0265(95)00413-0
[56] Métais, O., Riley, J. J. & Lesieur, M.1994Numerical simulations of stably-stratified rotating turbulence. In Stably-Stratified Flows - Flow and Dispersion over Topography (ed. Castro, I. P. & Rockliff, N. J.), pp. 139-151. Oxford University Press. · Zbl 0904.76054
[57] Mininni, P. D., Scale interactions in magnetohydrodynamic turbulence, Annu. Rev. Fluid Mech., 43, 1, 377-397, (2011) · Zbl 1299.76306 · doi:10.1146/annurev-fluid-122109-160748
[58] Mininni, P. D.; Rosenberg, D.; Pouquet, A., Isotropization at small scales of rotating helically driven turbulence, J. Fluid Mech., 699, 263-279, (2012) · Zbl 1248.76073 · doi:10.1017/jfm.2012.99
[59] Mininni, P. D.; Rosenberg, D.; Reddy, R.; Pouquet, A., A hybrid MPI-OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence, Parallel Comput., 37, 316-326, (2011) · doi:10.1016/j.parco.2011.05.004
[60] Moarref, R.; Jovanović, M. R., Controlling the onset of turbulence by streamwise travelling waves. Part 1. Receptivity analysis, J. Fluid Mech., 663, 70-99, (2010) · Zbl 1205.76129 · doi:10.1017/S0022112010003393
[61] Müller, P.; Holloway, G.; Henyey, F.; Pomphrey, N., Nonlinear-interactions among internal gravity – waves, Rev. Geophys., 24, 3, 493-536, (1986) · doi:10.1029/RG024i003p00493
[62] Nastrom, G. D.; Gage, K. S.; Jasperson, W. H., Kinetic energy spectrum of large-and mesoscale atmospheric processes, Nature, 310, 36-38, (1984) · doi:10.1038/310036a0
[63] Nazarenko, S. V.2010Wave Turbulence, , vol. 825. Springer. · Zbl 1220.76006
[64] Newell, A. C., Rossby wave packet interactions, J. Fluid Mech., 35, 255-271, (1969) · Zbl 0176.54704 · doi:10.1017/S0022112069001108
[65] Newell, A. C.; Rumpf, B., Wave turbulence, Annu. Rev. Fluid Mech., 43, 1, 59-78, (2011) · Zbl 1299.76006 · doi:10.1146/annurev-fluid-122109-160807
[66] Pouquet, A.; Marino, R., Geophysical turbulence and the duality of the energy flow across scales, Phys. Rev. Lett., 111, (2013) · doi:10.1103/PhysRevLett.111.234501
[67] Pouquet, A.; Sen, A.; Rosenberg, D.; Mininni, P.; Baerenzung, J., Inverse cascades in turbulence and the case of rotating flows, Phys. Scr. T, 155, (2013)
[68] Praud, O.; Fincham, A. M.; Sommeria, J., Decaying grid turbulence in a strongly stratified fluid, J. Fluid Mech., 522, 1-33, (2005) · Zbl 1060.76514 · doi:10.1017/S002211200400120X
[69] Riley, J. J.; De Bruyn Kops, S. M., Dynamics of turbulence strongly influenced by buoyancy, Phys. Fluids, 15, 2047-2059, (2003) · Zbl 1186.76446 · doi:10.1063/1.1578077
[70] Riley, J. J.; Lelong, M.-P., Fluid motions in the presence of strong stable stratification, Annu. Rev. Fluid Mech., 32, 1, 613-657, (2000) · Zbl 0988.76019 · doi:10.1146/annurev.fluid.32.1.613
[71] Riley, J. J., Metcalfe, R. W. & Weissman, M. A.1981Direct numerical simulations of homogeneous turbulence in density-stratified fluids. In AIP Conf. Proc., vol. 76, pp. 79-112. American Institute of Physics. doi:10.1063/1.33198
[72] Rorai, C.; Mininni, P. D.; Pouquet, A., Turbulence comes in bursts in stably stratified flows, Phys. Rev. E, 89, (2014)
[73] Rosenberg, D.; Pouquet, A.; Marino, R.; Mininni, P. D., Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations, Phys. Fluids, 27, (2015) · doi:10.1063/1.4921076
[74] Sagaut, P.; Cambon, C., Homogeneous Turbulence Dynamics, (2008), Cambridge University Press · Zbl 1154.76003 · doi:10.1017/CBO9780511546099
[75] Sahoo, G.; Bonaccorso, F.; Biferale, L., On the role of helicity for large-and small-scales turbulent fluctuations, Phys. Rev. E, 92, 5, (2015) · doi:10.1103/PhysRevE.92.051002
[76] Sharma, A. S.; Mckeon, B. J., On coherent structure in wall turbulence, J. Fluid Mech., 728, 196-238, (2013) · Zbl 1291.76173 · doi:10.1017/jfm.2013.286
[77] Smith, L. M.; Chasnov, J. R.; Waleffe, F., Crossover from two- to three-dimensional turbulence, Phys. Rev. Lett., 77, 12, 2467-2470, (1996) · doi:10.1103/PhysRevLett.77.2467
[78] Smith, L. M.; Waleffe, F., Generation of slow large scales in forced rotating stratified turbulence, J. Fluid Mech., 451, 145-168, (2002) · Zbl 1009.76040 · doi:10.1017/S0022112001006309
[79] Smyth, W. D.; Moum, J. N., Anisotropy of turbulence in stably stratified mixing layers, Phys. Fluids, 12, 6, 1343-1362, (2000) · Zbl 1149.76543 · doi:10.1063/1.870386
[80] Smyth, W. D.; Moum, J. N., Length scales of turbulence in stably stratified mixing layers, Phys. Fluids, 12, 6, 1327-1342, (2000) · Zbl 1149.76542 · doi:10.1063/1.870385
[81] Sozza, A.; Boffetta, G.; Muratore-Ginanneschi, P.; Musacchio, S., Dimensional transition of energy cascades in stably stratified forced thin fluid layers, Phys. Fluids, 27, (2015) · doi:10.1063/1.4915074
[82] Staquet, C.; Godeferd, F. S., Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 1. Flow energetics, J. Fluid Mech., 360, 295-340, (1998) · Zbl 0920.76035 · doi:10.1017/S0022112097008641
[83] Staquet, C.; Sommeria, J., Internal gravity waves: from instabilities to turbulence, Annu. Rev. Fluid Mech., 34, 1, 559-593, (2002) · Zbl 1047.76014 · doi:10.1146/annurev.fluid.34.090601.130953
[84] Sukhatme, J.; Smith, L. M., Vortical and wave modes in 3D rotating stratified flows: random large-scale forcing, Geophys. Astrophys. Fluid Dyn., 102, 5, 437-455, (2008) · Zbl 1505.76105 · doi:10.1080/03091920801915318
[85] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation, (2006), Cambridge University Press · Zbl 1374.86002 · doi:10.1017/CBO9780511790447
[86] Vanneste, J., Balance and spontaneous wave generation in geophysical flows, Annu. Rev. Fluid Mech., 45, 147-172, (2013) · Zbl 1359.76068 · doi:10.1146/annurev-fluid-011212-140730
[87] Waite, M. L., Potential enstrophy in stratified turbulence, J. Fluid Mech., 722, (2013) · Zbl 1287.76145 · doi:10.1017/jfm.2013.150
[88] Waite, M. L.; Bartello, P., Stratified turbulence dominated by vortical motion, J. Fluid Mech., 517, 281-308, (2004) · Zbl 1063.76044 · doi:10.1017/S0022112004000977
[89] Waite, M. L.; Bartello, P., Stratified turbulence generated by internal gravity waves, J. Fluid Mech., 546, 313-339, (2006) · Zbl 1222.76058 · doi:10.1017/S0022112005007111
[90] Waite, M. L.; Bartello, P., The transition from geostrophic to stratified turbulence, J. Fluid Mech., 568, 89-108, (2006) · Zbl 1177.76147 · doi:10.1017/S0022112006002060
[91] Warn, T., Statistical mechanical equilibria of the shallow water equations, Tellus A, 38, 1, 1-11, (1986) · doi:10.1111/j.1600-0870.1986.tb00448.x
[92] Warn, T.; Bokhove, O.; Shepherd, T. G.; Vallis, G. K., Rossby number expansions, slaving principles, and balance dynamics, Q. J. R. Meteorol. Soc., 121, 523, 723-739, (1995) · doi:10.1002/qj.49712152313
[93] Whitehead, J. P.; Wingate, B. A., The influence of fast waves and fluctuations on the evolution of the dynamics on the slow manifold, J. Fluid Mech., 757, 155-178, (2014) · Zbl 1416.76338 · doi:10.1017/jfm.2014.467
[94] Zakharov, V. E.; Lvov, V. S.; Falkovich, G., Kolmogorov Spectra of Turbulence, (1992), Springer · Zbl 0786.76002 · doi:10.1007/978-3-642-50052-7
[95] Zeman, O., A note on the spectra and decay of rotating homogeneous turbulence, Phys. Fluids, 6, 3221-3223, (1994) · Zbl 0832.76033 · doi:10.1063/1.868053
[96] Zhu, J.-Z.; Yang, W.; Zhu, G.-Y., On one-chiral-sector-dominated turbulence states, J. Fluid Mech., 739, 479-501, (2014) · Zbl 1330.76147 · doi:10.1017/jfm.2013.561
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.