×

Rough approximation of a preference relation by multi-decision dominance for a multi-agent conflict analysis problem. (English) Zbl 1388.91089

Summary: Multi-attribute group decision-making (MAGDM) has evoked increasing attention in recent years. Meanwhile, many valuable approaches have been developed to solve various MAGDM problems. In this paper, we consider a MAGDM problem in the presence of multi-attribute and multi-decision decision making with preference, namely the MA&MD decision problem. It involves the assignment of objects (actions), evaluated based on a set of conditional attributes, to pre-defined and preference-ordered multi-decision making. The actions are described by a finite set of conditional attributes and decision attributes. Both types of attribute take the values from their domain with preference order. In order to construct a comprehensive preference evaluation model that could be used to support the optimal choice task, we define two dominance relations, one on the condition attribute set and the other on the decision attribute set. We then present the lower and upper approximations of a preference relation defined by the decision attribute set based on a multi- decision preference dominance relation. Meanwhile, we propose an approach to decision making based on the rough set model established in this paper. The approach to decision making is derived from the lower approximation of decision classes with a preference dominance relation. The idea and decision rule are applied to solving a multi-agent conflict analysis decision problem. This method addresses limitations of the Pawlak conflict analysis model and thus improves on that model. Furthermore, to give practical significance to this management decision making approach, we present two extended models of the multi-decision preference dominance-based rough set as well as the corresponding decision making method. Moreover, we compare the proposed approach to previous studies of dominance-based rough set approaches to multiple attribute (criteria) decision making. The main contribution of this paper is twofold. One is to establish a generalization of the classical dominance-based rough set approach, i.e., the model of multi-decision preference dominance-based rough set. Another is to present a new approach to deal with the multi-agent conflict analysis decision making problem based on the proposed multi-decision rough set approach.

MSC:

91B06 Decision theory
91B08 Individual preferences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aydin, S.; Kahraman, C.; Kaya, I., A new fuzzy multicriteria decision making approach: an application for European quality award assessment, Knowl.-Based Syst., 32, 37-46 (2012)
[2] Błszczyński, J.; Greco, S.; Słowiński, R.; Szelag, M., Monotonic variable consistency rough set approaches, Int. J. Approx. Reason., 20, 979-999 (2009) · Zbl 1191.68673
[3] Bi, W. J.; Chen, X. H., A group sorting decision making approach based on extended dominance-based rough set, Soft Sci., 23, 3, 119-122 (2009)
[4] Bustince, H.; Pagola, M.; Barrenechea, E., Construction of fuzzy indices from fuzzy DI-subsethood measures: application to the global comparison of images, Inform. Sci., 177, 3, 906-929 (2007) · Zbl 1112.94033
[5] Bustince, H.; Mohedano, V.; Barrenechea, E.; Pagola, M., Definition and construction of fuzzy DI-subsethood measures, Inform. Sci., 176, 3190-3231 (2006) · Zbl 1104.03052
[6] Boggia, A.; Rocchi, L.; Paolotti, L.; Musotti, F.; Greco, S., Assessing rural sustainable development potentialities using a dominance-based rough set approach, J. Environ. Manage., 144, 160-167 (2014)
[7] Bouyssou, D.; Marchant, T., Multiattribute preference models with reference points, Eur. J. Oper. Res., 229, 470-481 (2013) · Zbl 1317.91019
[8] Cabrerizo, F. J.; Herrera-Viedma, E.; Pedrycz, W., A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts, Eur. J. Oper. Res., 230, 624-633 (2013) · Zbl 1317.91020
[9] Chakhar, S.; Saad, I., Dominance-based rough set approach for groups in multicriteria classification problems, Dec. Sup. Syst., 54, 1, 372-380 (2012)
[10] Chen, T. Y., Multiple criteria group decision-making with generalized interval-valued fuzzy numbers based on signed distances and incomplete weights, Appl. Mathods Mod., 36, 3029-3052 (2012) · Zbl 1252.91047
[11] Dembczynski, K.; Greco, S.; Slowinski, R., Methodology of rough-set-based classification and sorting with hierarchical structure of attributes and criteria, Con. Cyber., 31, 4, 891-920 (2002) · Zbl 1179.93031
[12] Dembczynski, K.; Greco, S.; Slowinski, R., Rough set approach to multiple criteria classification with imprecise evaluations and assignments, Eur. J. Oper. Res., 198, 626-636 (2009) · Zbl 1163.90540
[13] Deja, R., Conflict model with negotiation, Bull. Polish Acad. Sci., Tec. Sci., 44, 4, 475 (1996) · Zbl 0885.90150
[14] Deja, R., Conflict analysis, Int. J. Intell. Syst., 17, 235-253 (2002) · Zbl 0997.68136
[15] Dong, Y. C.; Zhang, G. Q.; Hong, W. C.; Xu, Y. F., Consensus models for AHP group decision making under row geometric mean prioritization method, Dec. Sup. Syst., 49, 281-289 (2010)
[16] Dong, G.; Young, C.; Jin, P.; Young, P., Correlation coefficient of interval-valued intuitionistic fuzzy sets and its application to multiple attribute group decision making problems, Math. Comp. Mod., 50, 1279-1293 (2009) · Zbl 1185.68714
[17] Fu, C.; Huhns, M.; Yang, S. L., A consensus framework for multiple attribute group decision analysis in an evidential reasoning context, Inform. Fus., 17, 22-35 (2014)
[18] Fu, C.; Yang, S. L., An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements, Eur. J. Oper. Res., 223, 167-176 (2012) · Zbl 1253.91050
[19] Fortemps, P.; Greco, S.; Słowiński, R., Multicriteria decision support using rules that represent rough-graded preference relations, Eur. J. Oper. Res., 188, 206-223 (2008) · Zbl 1135.90019
[20] Fan, T. F.; Liau, C. J.; Liu, D. R., Dominance-based fuzzy rough set analysis of uncertain and probabilistic data tables, Int. J. Approx. Reason., 52, 1283-1297 (2011) · Zbl 1242.68325
[21] Fang, L. H.; Li, K. D.; Li, J. J., Properties of two types of covering-based rough sets, Int. J. Mach. Learn. Cyber., 4, 6, 685-691 (2013)
[22] Greco, S.; Matarazzo, B.; Słowiński, R., Rough approximation of a preference relation by dominance relations, Eur. J. Oper. Res., 117, 63-83 (1999) · Zbl 0998.90044
[23] Greco, S.; Matarazzo, B.; Słowiński, R., Rough sets theory for multicriteria decision analysis, Eur. J. Oper. Res., 129, 1-47 (2001) · Zbl 1008.91016
[24] Greco, S.; Matarazzo, B.; Słowiński, R., Rough sets methodology for sorting problems in presence of multiple attributes and criteria, Eur. J. Oper. Res., 138, 2, 247-259 (2002) · Zbl 1008.90509
[25] Greco, S.; Matarazzo, B.; Słowiński, R., Dominance-based rough set approach to decision involving a plurality of decision makers, (Greco, S.; etal., Rough Sets and Current Trends in Computing. Rough Sets and Current Trends in Computing, LNAI, 4259 (2006), Springer: Springer Berlin), 306-317 · Zbl 1162.91332
[26] Greco, S.; Słowiński, R.; Zielniewicz, P., Putting dominance-based rough set approach and robust ordinal regression together, Dec. Sup. Syst., 54, 2, 891-903 (2013)
[27] Huang, B., Graded dominance interval-based fuzzy objective information systems, Knowl.-Based Syst., 24, 7, 1004-1012 (2011)
[28] Huang, B.; Li, H. X.; Wei, D. K., Dominance-based rough set model in intuitionistic fuzzy information systems, Knowl.-Based Syst., 28, 15-123 (2012)
[29] Hu, J.; Chen, X. H., Multi-criteria decision making method based on dominance relation and variable precision rough set, Syst. Eng. Electr., 32, 4, 59-763 (2010) · Zbl 1224.90094
[30] James, J. H.L., Variable consistency dominance-based rough set approach to formulate airline service strategies, Appl. Soft Comput., 11, 4011-4020 (2011)
[31] Inuiguchi, M.; Yoshioka, Y.; Kusunoki, Y., Variable-precision dominance-based rough set approach and attribute reduction, Int. J. Approx. Reason., 20, 1199-1214 (2009) · Zbl 1191.68681
[32] Kotłwski, W.; Dembczyński, K.; Greco, S.; Słowiński, R., Stochastic dominance-based rough set model for ordinal classification, Inform. Sci., 178, 4019-4037 (2008) · Zbl 1173.68734
[33] Kadziński, M.; Greco, S.; Słowiński, Roman R., Robust ordinal regression for dominance-based rough set approach to multiple criteria sorting, Inform. Sci., 283, 211-228 (2014) · Zbl 1355.91029
[34] Karami, J.; Alimohammadi, A.; Seifouri, T., Water quality analysis using a variable consistency dominance-based rough set approach, Comput. Environ. Urban Syst., 43, 25-33 (2014)
[35] Lin, G. P.; Liang, J. Y.; Qian, Y. H., Topological approach to multigranulation rough sets, Int. J. Mach. Learn. Cybernet., 5, 2, 233-243 (2014)
[36] Li, S. Y.; Li, T. R., Incremental update of approximations in dominance-based rough sets approach under the variation of attribute values, Inform. Sci., 294, 348-361 (2015) · Zbl 1360.68840
[37] Lingras, P.; Chen, M.; Miao, D. Q., Qualitative and quantitative combinations of crisp and rough clustering schemes using dominance relations, Int. J. Approx. Reason., 55, 238-258 (2014) · Zbl 1316.68116
[38] Mata, F.; Martnez, L.; Herrera-Viedma, E., An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context, IEEE Trans. Fuzzy Syst., 17, 2, 279-290 (2009)
[39] Ma, L. C., Screening alternatives graphically by an extended case-based distance approach, Omega, 40, 96-103 (2012)
[40] Morais, D. C.; Almeida, A. T.D., Group decision making on water resources based on analysis of individual rankings, Omega, 40, 27-42 (2012)
[41] Mohamed, M. G.E.; Aminah, R. F.M., Fuzzy preference relations consensus approach to reduce conflicts on shared responsibilities in the owner managing contractor delivery system, J. Constr. Eng. Manage., 137, 609-618 (2011)
[42] Pawlak, Z., Rough sets, Int. J. Inform. Sci., 11, 5, 341-356 (1982) · Zbl 0501.68053
[43] Pawlak, Z., An inquiry into anatomy of conflicts, J. Inform. Sci., 109, 65-68 (1998)
[44] Pawlak, Z., Some remarks on conflict analysis, Eur. J. Oper. Res., 166, 649-654 (2005) · Zbl 1097.91010
[45] Pedrycz, W.; Song, M. L., A granulation of linguistic information in AHP decision-making problems, Inform. Fus., 17, 93-101 (2014)
[46] Pedrycz, W., Granular Computing: Analysis and Design of Intelligent Systems (2013), CRC Press/Francis Taylor: CRC Press/Francis Taylor Boca Raton
[47] Pedrycz, W., Allocation of information granularity in optimization and decision-making models: towards building the foundations of granular computing, Eur. J. Oper. Res., 232, 137-145 (2014)
[48] Pedrycz, W.; Homendad, W., Building the fundamentals of granular computing: a principle of justifiable granularity, Appl. Soft Comput., 13, 4209-4218 (2013)
[49] Pei, B.; Zhao, S. Y.; Chen, H.; Zhou, X.; Chen, D. J., FARP: mining fuzzy association rules from a probabilistic quantitative database, Inform. Sci., 237, 242-260 (2013)
[50] Qiong, B.; Ruan, D.; Shen, Y.; Hermans, E.; Janssens, D., Improved hierarchical fuzzy TOPSIS for road safety performance evaluation, Knowl.-Based Syst., 32, 84-90 (2012)
[51] Shiraz, R. K.; Charles, V.; Jalalzadeh, L., Fuzzy rough DEA model: a possibility and expected value approaches, Expert Syst. Appl., 41, 434-444 (2014)
[52] Saaty, T.; Alexander, J., Conflict Resolution: The Analytic Hierarchy Process (1989), Praeger: Praeger New York
[53] Skowron, A.; Ramanna, S.; Peters, J., Conflict analysis and information systems: a rough set approach, (Wang, G.; etal., RSKT2006. RSKT2006, LNAI, 4062 (2006), Springer-Verlag: Springer-Verlag Berlin, Heidelberg), 233-240 · Zbl 1196.68290
[54] Sun, B. Z.; Ma, W. M., An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application, Omega, 51, 83-92 (2015)
[55] Sun, B. Z.; Ma, W. M.; Gong, Z. T., Dominance-based rough set theory over interval-valued information systems, Exp. Syst., 31, 2, 185-197 (2014)
[56] Sun, B. Z.; Ma, W. M.; Zhao, H. Y., Decision-theoretic rough fuzzy set model and application, Inform. Sci., 283, 180-196 (2014) · Zbl 1355.68260
[57] Sharkawy, A. B.; El-Sharief, M. A., Surface roughness prediction in end milling process using intelligent systems, Int. J. Mach. Learn. Cybernet., 5, 1, 135-150 (2014)
[58] Susmaga, R., Reducts and constructs in classic and dominance-based rough sets approach, Inform. Sci., 271, 45-64 (2014) · Zbl 1341.68268
[59] Szelazg, M.; Greco, S.; Słowiński, R., Variable consistency dominance-based rough set approach to preference learning in multicriteria ranking, Inform. Sci., 277, 525-552 (2014) · Zbl 1354.68228
[60] Siraj, S.; Mikhailov, L.; Keane, J. A., Contribution of individual judgments toward inconsistency in pairwise comparisons, Eur. J. Oper. Res., 242, 557-567 (2015) · Zbl 1341.90073
[61] Wibowo, S.; Deng, H. P., Consensus-based decision support for multicriteria group decision making, Comput. Industr. Eng., 66, 625-633 (2013)
[62] Wang, X. Z.; Zhai, J. H.; Lu, S. X., Induction of multiple fuzzy decision trees based on rough set technique, Inform. Sci., 178, 16, 3188-3202 (2008) · Zbl 1154.68529
[63] Wang, X. Z.; Tsang, E. C.C.; Zhao, S. Y.; Chen, D. G.; Yeung, D. S., Learning fuzzy rules from fuzzy samples based on rough set techniques, Inform. Sci., 177, 4493-4514 (2007) · Zbl 1129.68069
[64] Wang, J.; Li, K.; Zhang, H., Interval-valued intuitionistic fuzzy multi-criteria decision-making approach based on prospect score function, Knowl.-Based Syst., 27, 119-125 (2012)
[65] Wang, W.; Liu, X.; Qin, Y., Multi-attribute group decision making models under interval type-2 fuzzy environment, Knowl.-Based Syst., 30, 121-128 (2012)
[66] Yu, D.; Wu, Y.; Lu, T., Interval-valued intuitionistic fuzzy prioritized operators and their application in group decision making, Knowl.-Based Syst., 30, 57-66 (2012)
[67] Yao, Y. Y.; Deng, X. F., Quantitative rough sets based on subsethood measures, Inform. Sci., 267, 306-322 (2014) · Zbl 1339.68249
[68] Yang, X. B.; Qi, Y.; Yu, D. J.; Yu, H. L.; Yang, J. Y., \( \alpha \)-Dominance relation and rough sets in interval-valued information systems, Inform. Sci., 294, 334-347 (2015) · Zbl 1360.68853
[69] Ziarko, W., Variable precision rough set model, J. Comput. Syst. Sci., 46, 39-59 (1993) · Zbl 0764.68162
[70] Zhang, W. X.; Lenug, Y., The Principal of Uncertainty Reasoning (1996), Xi’an Jiaotong University Press: Xi’an Jiaotong University Press Xi’an
[71] Zaras, Z., Rough approximation of a preference relation by a multi-attribute stochastic dominance for determinist and stochastic evaluation problems, Eur. J. Oper. Res., 130, 305-314 (2001) · Zbl 1068.91521
[72] Zaras, Z., Rough approximation of a preference relation by a multi-attribute dominance for deterministic, stochastic and fuzzy decision problemsstochastic and fuzzy decision problems, Eur. J. Oper. Res., 159, 196-206 (2004) · Zbl 1065.90528
[73] Zhao, S. Y.; Wang, X. Z.; Chen, D. G.; Tsang, E. C.C., Nested structure in parameterized rough reduction, Inform. Sci., 248, 130-150 (2013) · Zbl 1335.68275
[74] Zhao, S. Y.; Chen, H.; Li, C. P.; Zhai, M. Y.; Du, X. Y., RFRR: robust fuzzy rough reduction, IEEE Trans. Fuzzy Syst., 21, 5, 825-841 (2013)
[75] Zhang, H. Y.; Leung, Y.; Zhou, L., Variable-precision-dominance-based rough set approach to interval-valued information systems, Inform. Sci., 244, 75-91 (2013) · Zbl 1355.68268
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.