×

Fractional diffusion equation with distributed-order Caputo derivative. (English) Zbl 1423.35427

Summary: We consider a fractional diffusion equation with distributed-order Caputo derivative. We prove existence of a weak and regular solution for a general uniformly elliptic operator under the assumption that the weight function is only integrable.

MSC:

35R13 Fuzzy partial differential equations
35K45 Initial value problems for second-order parabolic systems
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] M. Al-Refai and Y. Luchko, Analysis of fractional diffusion equations of distributed order: maximum principles and their applications, Analysis (Berlin) \bff36 (2016), no. 2, 123-133. · Zbl 1381.35208 · doi:10.1515/anly-2015-5011
[2] E. Bazhlekova, Completely monotone functions and some classes of fractional evolution equations, Integral Transforms Spec. Funct. \bff26 (2015), no. 9, 737-752. · Zbl 1332.26011 · doi:10.1080/10652469.2015.1039224
[3] A. V. Bobylev and C. Cercignani, The inverse Laplace transform of some analytic functions with an application to the eternal solutions of the Boltzmann equation, Appl. Math. Lett. \bff15 (2002), 807-813. · Zbl 1025.44002 · doi:10.1016/S0893-9659(02)00046-0
[4] A. N. Kochubei, Distributed order calculus and equation of ultraslow diffusion, J. Math. Anal. Appl. \bff340 (2008), no. 1, 252-281. · Zbl 1149.26014 · doi:10.1016/j.jmaa.2007.08.024
[5] A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes, integral Equations and Operator Theory \bff71 (2011), no. 4, 583-600. · Zbl 1250.26006
[6] A. N. Kochubei, Distributed order calculus: an operator-theoretic interpretation, Ukrain. Math. J. \bff60 (2008), no. 4, 551-562. · Zbl 1164.26009 · doi:10.1007/s11253-008-0076-x
[7] A. Kubica and M. Yamamoto, Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fract. Calc. Appl. Anal. \bff21 (2018), no. 2, 276-311. · Zbl 1398.35271 · doi:10.1515/fca-2018-0018
[8] A. Kubica, P. Rybka and K. Ryszewska, Weak solutions of fractional differential equations in non cylindrical domains, Nonlinear Anal. \bff36 (2017), 154-182. · Zbl 1365.35210 · doi:10.1016/j.nonrwa.2017.01.005
[9] Z. Li, Y. Luchko and M. Yamamoto, Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations, Fract. Calc. Appl. Anal. \bff17 (2014), no. 4, 1114-1136. · Zbl 1312.35184
[10] Z. Li, Y. Luchko and M. Yamamoto, Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem, Comput. Math. Appl. \bff73 (2017), no. 6, 1041-1052. · Zbl 1409.35221 · doi:10.1016/j.camwa.2016.06.030
[11] Y. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal. \bff12 (2009), no. 4, 409-422. · Zbl 1198.26012
[12] Y. Luchko and M. Yamamoto, General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems, Fract. Calc. Appl. Anal. \bff19 (2016), no. 3, 676-695. · Zbl 1499.35667 · doi:10.1515/fca-2016-0036
[13] W. Rundell and Z. Zhang, Fractional diffusion: recovering the distributed fractional derivative from overposed data, Inverse Problems \bff33 (2017), no. 3, art. id. 035008. · Zbl 1372.35371 · doi:10.1088/1361-6420/aa573e
[14] S. Samko, A. Kilbas and O. Marichev, Fractional integrals and derivatives. Theory and Applications, Gordon and Breach, Yverdon, Switzerland (1993). · Zbl 0818.26003
[15] R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcial. Ekvac. \bff52 (2009), 1-18. · Zbl 1171.45003 · doi:10.1619/fesi.52.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.